跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石兆恩
研究生(外文):Shih, Chao-En
論文名稱:探討鈦植體之複合式表面處理對骨質流失大鼠骨整合之影響
論文名稱(外文):Exploring the effect of multiple surface treatments of titanium implants on osseointegration in rats with bone loss
指導教授:黃何雄
指導教授(外文):Huang, Her-Hsiung
口試委員:林怡彣黃何雄王鼎涵孫瑛穗
口試委員(外文):Lin, Yi-WenHuang, Her-HsiungWang, Ding-HanSun, Ying-Sui
口試日期:2023-11-27
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:73
中文關鍵詞:鈦牙科植體複合式表面處理骨整合骨質流失骨密度
外文關鍵詞:Titanium dental implantMultiple surface treatmentsOsseointegrationBone lossBone mineral density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
鈦金屬 (Titanium, Ti)因具備良好的機械性能、生物相容性、耐蝕性質以及植體植入植入後的長期穩定性也很高而被廣泛應用於牙科及骨科植體中,然而,鈦金屬也因其表面具生物惰性這一缺點而無法很好的促進骨整合,因此,已有大量研究針對鈦金屬這一缺點,通過將其進行表面改質 (Surface modification)的方式改變其表面形貌及化學性質,從而達到促進骨整合的目的。雖然目前已有非常多種表面改質的方法,但多數研究之處理都偏向單一製程,因此我們實驗室團隊開發出一種複合式表面處理 (Multiple surface treatment),即先利用噴砂、酸蝕、鹼蝕處理於材料表面製造出微米次微米奈米複合式尺寸孔洞,再利用接枝第一型膠原蛋白 (Type I collagen)製備仿細胞外基質的表面,另外,考量到第一型膠原蛋白具有容易降解的缺點,因此還選用了天然且毒性低的表沒食子兒茶素-3-沒食子酸酯 (Epigallocatechine-3-gallate, EGCG)延緩第一型膠原蛋白的降解時長。實驗室已發表的論文結果顯示,此複合式表面處理製程在體外細胞實驗中可達到促進成骨作用的同時抑制蝕骨作用之效果。
為進一步探討實驗室先前開發之複合式表面處理實際於體內環境中是否能達到促進骨整合的效果,在本研究中,會將相同之複合式表面處理應用於鈦牙科植體,並透過表面特性分析分析鈦植體之表面形貌、官能基及化學成分;在動物實驗部分,選用6個月大之雌性SD (Sprague-Dawley rats, SD rats)大鼠,首先分別進行雙側卵巢摘除術 (Ovariectomy, OVX)及假手術 (Sham surgery),術後2個月利用顯微斷層掃描 (Microcomputed tomography, Micro-CT)分析大鼠骨密度 (Bone mineral density, BMD)變化,確認骨密度達到預期結果後,將鈦植體分別植入摘除雙側卵巢之模擬骨質流失的大鼠及保留雙側卵巢之模擬正常骨質的大鼠股骨中,並在植體植入後6週進行安樂死,藉由Micro-CT分析其骨密度及骨整合變化,藉此探討實驗室開發的複合式表面處理對骨質流失大鼠骨整合之影響。
Titanium (Ti) is widely used in dental and orthopedic implants due to its good mechanical properties, biocompatibility, corrosion resistance, and high long-term stability after implant placement. However, titanium metal is also unable to promote osseointegration well due to its shortcomings of biological inertness on the surface. Therefore, many studies have been conducted to address this shortcoming of titanium metal and change its surface through surface modification. Surface morphology and chemical properties to achieve the purpose of promoting osseointegration. Although there are many methods of surface modification, most research studies focus on a single process. Therefore, our laboratory team developed a multiple surface treatments, which first uses sandblasting and acid etching, alkaline treatment to create micron sub-micron nanocomposite size holes on the surface of the material, and then grafting Type I collagen to prepare a surface that imitates extracellular matrix. In addition, Type I collagen is taken into consideration it has the disadvantage of being easily degraded, so the natural and low-toxic epigallocatechin-3-gallate (EGCG) was also used to delay the degradation of type I collagen. The results of published papers in the laboratory show that this multiple surface treatments process can achieve the effect of promoting osteogenesis while inhibiting osteoclastogenesis in in vitro cell experiments.
To further explore whether the multiple surface treatments previously developed by the laboratory can actually achieve the effect of promoting osseointegration in the in vivo environment, the same composite surface treatment will be applied to titanium dental implants, and the surface morphology of titanium implants will be analyzed through surface characteristics analysis. Functional groups and chemical components; in the animal experiment, 6-month-old female Sprague-Dawley rats (SD rats) were selected. First, bilateral ovarian removal (Ovariectomy, OVX) and sham surgery were performed respectively. After 2 months, Monthly microcomputed tomography (Micro-CT) was used to analyze the changes in bone mineral density (BMD) of rats. After confirming that the bone density reached the expected results, titanium implants were implanted into the simulated bones of the bilateral ovaries. Rats with bone loss and rat femurs that simulated normal bone with both ovaries retained were euthanized 6 weeks after implant implantation. The changes in bone density and osseointegration were analyzed by Micro-CT to explore effects of laboratory-developed composite surface treatment on osseointegration in rats with bone loss.
中文摘要i
英文摘要iii
目錄 v
圖目錄 viii
第一章 緒論 1
1.1文獻回顧 1
1.1.1 鈦金屬表面特性 1
1.1.2 骨整合之重要性 1
1.1.3 骨重塑對於骨整合之影響 2
1.1.4 鈦金屬之表面改質 3
1.1.5 鈦金屬之複合式表面處理製程 5
1.2 研究目的 9
第二章 實驗材料與方法 10
2.1 鈦牙科植體 10
2.2 植體表面處理 10
2.2.1 噴砂/酸蝕處理 10
2.2.2 鹼蝕處理 11
2.2.3 第一型膠原蛋白接枝處理 11
2.2.4 EGCG接枝處理 12
2.2.5 EGCG交聯第一型膠原蛋白處理 12
2.3 材料表面分析 13
2.3.1 材料表面形貌觀察 13
2.3.2 材料表面化學組成分析 13
2.3.3 第一型膠原蛋白定性分析 14
2.4 動物實驗 15
2.4.1 實驗動物 15
2.4.2 卵巢摘除術及假手術 16
2.4.3 鈦植體植入手術 17
2.4.4 動物犧牲 18
2.5 骨整合分析 18
2.5.1 骨整合分析 18
第三章 結果 20
3.1 材料表面特性分析 20
3.1.1 材料表面形貌觀察 20
3.1.2 材料表面化學組成分析 21
3.1.3 第一型膠原蛋白定性及定量分析 22
3.2 動物實驗 23
3.2.1 大鼠卵巢摘除術 23
3.2.2 大鼠骨密度變化分析 24
3.2.3 大鼠植入實驗 25
3.2.4 大鼠骨整合分析 25
第四章 討論 31
4.1 複合式表面處理製程對鈦植體表面之影響 31
4.2 複合式表面處理之鈦植體對骨質流失大鼠骨整合之影響32
第五章 結論 35
參考文獻 36
附圖 45
Aibar-Almazán, A., Voltes-Martínez, A., Castellote-Caballero, Y., Afanador-Restrepo, DF., Carcelén-Fraile, MDC., López-Ruiz, E. 2022. Current Status of the Diagnosis and Management of Osteoporosis. International Journal of Molecular. 23(16): 9465.
Álvarez-López, A., Colchero, L., Elices, M., Guinea, GV., Pérez-Rigueiro, J., González-Nieto, D. 2022. Improved cell adhesion to activated vapor silanization-biofunctionalized Ti-6Al-4V surfaces with ECM-derived oligopeptides. Biomaterials Advances. 133: 112614.
Ao, HY., Xie, YT., Tan, HL., Wu, XD., Liu, GW., Qin, A., Zheng, XB, Tang, TT. 2014. Improved hMSC functions on titanium coatings by type I collagen immobilization. Journal of Biomedical Materials Research Part A. 102(1): 204-14.
Alghamdi, HS., Bosco, R., van den Beucken, JJ., Walboomers, XF., Jansen, JA. 2013. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials. 34(15): 3747-57.
Albrektsson, T., Johansson, C. 2001. Osteoinduction, osteoconduction and osseointegration. European Spine Journal. 10: S96-S101.
Bai, L., Zhao, Y., Chen, PR., Zhang, XY., Huang, XB., Du, ZB., Crawford, R., Yao, XH., Tang, B., Hang, R., et al. 2021. Targeting Early Healing Phase with Titania Nanotube Arrays on Tunable Diameters to Accelerate Bone Regeneration and Osseointegration. Small. 17(4): e2006287.
Bai, L., Chen, PR., Zhao, Y., Hang, RY., Yao, XH., Tang, B., Liu, CS., Xiao, Y., Hang, RQ. 2021. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials. 278: 121162.
Dong, S,. Zhao, T., Wu, W., Zhang, ZW., Wu, J., Cai, KZ., Li, GQ., Lv, JX., Zhou HY., Tang, CB. 2023. Sandblasted/Acid-Etched Titanium Surface Modified with Calcium Phytate Enhances Bone Regeneration in a High-Glucose Microenvironment by Regulating Reactive Oxygen Species and Cell Senescence. ACS Biomaterials Science & Engineering. 9(8): 4720-4734.
Gao, Y., Lin, X., Liu, Y. 2024. Effect of nano-modified titanium surface with alkali heat treatment on early adhesion and growth of osteoblasts. Chinese Journal of Tissue Engineering Research. 28(15): 2302-2306.
Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. 2022. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science. 54(3): 397-425.
Ghilini, Fiorela., Fagali, Natalia., Pissinis, Diego E., Benítez, Guillermo., Schilardi, Patricia L. 2021. Multifunctional Titanium Surfaces for Orthopedic Implants: Antimicrobial Activity and Enhanced Osseointegration. ACS Applied Bio Materials. 4(8): 6451-6461.
Geng, Z., Li, XP., Ji, LL., Li, ZY., Zhu, SL., Cui, ZD., W, J., Cui, JY., Yang, XJ., Liu, CS. 2021. A novel snail-inspired bionic design of titanium with strontium-substituted hydroxyapatite coating for promoting osseointegration. Journal of Materials Science & Technology. 79: 35-45.
Garnero, P. The Role of Collagen Organization on the Properties of Bone. 2015. Calcified Tissue International. 97(3): 229-40.
Hou, C., An, J., Zhao, DY., Ma, X., Zhang, WL., Zhao, W., Wu, M., Zhang, ZY., Yuan, FS. 2022. Surface Modification Techniques to Produce Micro/Nano-scale Topographies on Ti-Based Implant Surfaces for Improved Osseointegration. Frontiers in Bioengineering and Biotechnology. 10: 835008.
Hao CP., Cao NJ., Zhu YH., Wang W. 2021. The osseointegration and stability of dental implants with different surface treatments in animal models: a network meta-analysis. Scientific Reports. 11(1): 13849.
Jiang, PL., Zhang, YM., Hu, R., Shi, B., Zhang, LH., Huang, QL., Yang, Y., Tang, PF., Lin, CJ. 2023. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioactive Materials. 27: 15-57.
Jemat, A., Ghazali, MJ., Razali, M., Otsuka, Y. 2015. Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Research International. 2015: 791725.
Kruger, MJ., Nell, TA. 2017. Bone mineral density in people living with HIV: a narrative review of the literature. AIDS Research and Therapy. 14(1) :35.
Lotz, EM., Cohen, DJ., Schwartz, Z., Boyan, BD. 2020. Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention. Clinical Oral Implants Research. 31(4): 374-387.
Liu, CF., Li, SJ., Hou, WT., Hao, YL., Huang, HH. 2019. Enhancing corrosion resistance and biocompatibility of interconnected porous β-type Ti-24Nb-4Zr-8Sn alloy scaffold through alkaline treatment and type I collagen immobilization. Applied Surface Science. 476: 325-334.
Le Guéhennec, L., Soueidan, A., Layrolle, P., Amouriq, Y. 2007. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. 23(7): 844-54.
Nie, XJ., Sun, X., Wang, CY., Yang, JX. 2020. Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regenerative Biomaterials. 7(1): 53-61.
Patty, D.J., Nugraheni, A.D., Dewi Ana, I., Yusuf, Y. 2022. Mechanical Characteristics and Bioactivity of Nanocomposite Hydroxyapatite/Collagen Coated Titanium for Bone Tissue Engineering. Bioengineering. 9(12): 784.
Park, JW., Seo, JH., Lee, HJ. 2022. Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant. Journal of Biomaterials Applications. 37(3): 447-458.
Pierre, C., Bertrand, G., Rey. C., Benhamou, O., Combes, C. 2019. Calcium phosphate coatings elaborated by the soaking process on titanium dental implants: Surface preparation, processing and physical-chemical characterization. Dental Materials. 35(2): e25-e35.
Song, YW., Maekawa, S., Sasaki, K., Yoshida, D., Nagai, M., Ishikawa-Nagai, S., Da Silva, J., Kim, DM., Chen, CY. 2023. Microscopic in-situ analysis of the mucosal healing around implants treated by protease activated receptor 4-agonist peptide or perpendicularly protruded type I collagen in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials.
Sun, Y., Helmholz, H., Willumeit-Römer, R. 2022. Surgical Classification for Preclinical Rat Femoral Bone Defect Model: Standardization Based on Systematic Review, Anatomical Analysis and Virtual Surgery. Bioengineering. 9: 476.
Sun, J., Huang, YK., Zhao, H., Niu, JJ., Ling, XW., Zhu, C., Wang, L., Yang, HL., Yang, ZL., Pan, GQ. et al. 2022. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioactive Materials. 9: 1-14.
Souza, JCM., Sordi, MB., Kanazawa, M., Ravindran, S., Henriques, B., Silva, FS., Aparicio, C., Cooper, LF. 2019. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia. 94: 112-131.
Krishnamoorthy, N., Tseng, YT., Gajendrarao, P., Sarathchandra, P., McCormack, A., Carubelli, I., Sohier, J., Latif, N., Chester, AH., Yacoub, MH. 2018. A Strategy to Enhance Secretion of Extracellular Matrix Components by Stem Cells: Relevance to Tissue Engineering. Tissue Engineering Part A. 24 (1-2): 145-156.
Veronesi, F., Brogini, S., De Luca, A., Bellini, D., Casagranda, V., Fini, M., Giavaresi, G. 2023. Cell Adhesion and Initial Bone Matrix Deposition on Titanium-Based Implants with Chitosan-Collagen Coatings: An In Vitro Study. International Journal of Molecular Sciences. 24(5): 4810.
Vasil’kov, A., Tseomashko, N., Tretyakova, A., Abidova, A., Butenko, I., Pereyaslavtsev, A., Arkharova, N., Volkov, V., Shtykova, E. 2023. Wound Coating Collagen-Based Composites with Ag Nanoparticles: Synthesis, Structure and Biological Activity. Coatings. 13(8): 1315.
Wang, J., Yang, BH., Guo, S., Yu, S., Li, HP. 2023. Manufacture of titanium alloy materials with bioactive sandblasted surfaces and evaluation of osseointegration properties. Frontiers in Bioengineering and Biotechnology. 11: 1251947.
Wu, Y., Zhou, H, Zeng, Y., Xie, H., Ma, D., Wang, Z., Liang, H. 2022. Recent Advances in Copper-Doped Titanium Implants. Material. 15(7): 2342.
Wang, QG., Zhou, P, Liu, SF., Attarilar, S., Ma, RL., Zhong, YS., Wang, LQ. 2020. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. Nanomaterials (Basel). 10(6): 1244.
Yang, WE., Huang, HH. 2021. TiO2 Nanonetwork on Rough Ti Enhanced Osteogenesis In Vitro and In Vivo. Journal of Dental Research. 100(10): 1186-1193.
Zhao YY., Bai L., Zhang Y., Yao RH., Sun YH., Hang RY., Chen XY., Wang HY., Y XH., Xiao Y. et al. 2022. Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis, and osteogenesis. Biomaterials. 288: 121684.
Zhong, J., Li, XL., Yao, YT., Zhou, J., Cao, SS., Zhang, XP., Jian, YT., Zhao, K. 2022. Effect of acid-alkali treatment on serum protein adsorption and bacterial adhesion to porous titanium. Journal of Materials Science. 33(2): 20.
Zhu, Y., Zheng, TX., Wen, LM., Li, R., Zhang, YB., Bi, WJ., Feng, XJ., Qi, MC. 2021. Osteogenic capability of strontium and icariin-loaded TiO2 nanotube coatings in vitro and in osteoporotic rats. Journal of Biomaterials Applications. 35(9): 1119-1131.
Zhu, CY., Lv, YT., Qian, C., Ding, ZH., Jiao, T., Gu, XY., Lu, EY., Wang, LQ., Zhang, FQ. 2018. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. International Journal of Nanomedicine. 13: 1881-1898.
Zhang J., Cai L., Wang TL., Tang SC., Li Q., Tang TT., Wei SC., Qian J., Wei J., Su JC. 2018. Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration. Nanomedicine: Nanotechnology, Biology and Medicine. 3(14): 965-976.
鄭郁穎 (2022)。探討複合式表面處理製程對調控鈦表面成骨作用與蝕骨細胞生成之影響。國立陽明交通大學口腔生物研究所碩士論文,台灣台北市。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 評估經磺化、紫外線處理和第一型膠原蛋白接枝後的聚醚酮酮表面生物活性
2. 黏合劑在磷碳負極材料中對鋰離子電池電性的影響
3. 電漿表面處理對於聚酯與尼龍織物在塗布加工後物性影響之研究
4. 在納米尺度系統中的電阻切換:考慮到鐵電隧道結和二維聚酞菁單層
5. 使用氮氧化矽/氮氧化鋁介電層之高壓氮化鎵功率電晶體三維整合氧化銦鎵鋅薄膜電晶體疊接組態其技術開發與可靠度分析
6. 利用TCAD模擬軟體探討提升砷化鎵高速電子遷移率電晶體高頻特性之方法
7. 探討高功率p型氮化鎵高電子遷移率場效電晶體特性分析及可靠度研究在不同鎂濃度參雜於p型氮化鎵、氮化鋁蝕刻終止層及不同元素參雜於緩衝層之影響
8. 應用於毫米波之收發器系統開發
9. CMOS相容之大範圍微機電派拉尼真空計之開發
10. γ射線照射對CVD生長的WS2和ReS2的結構、形態和憶阻特性的影響
11. 可應用於高效率功率電子之寬能隙(氮化鎵和氧化鎵)功率半導體元件特性和可靠度探討
12. 矽/二氧化矽基板類鑽石碳膜上生長超大型結晶狀石墨區塊之研究
13. 基於16奈米FinFET實現具可變區塊之高能效數位式記憶體浮點數內運算電路設計
14. 利用乾膜光阻製程技術開發高解析微流體液滴生成晶片應用於單細胞分子檢測
15. 使用高流量潮濕加熱鼻導管與非侵襲性陽壓呼吸器於長期使用呼吸器病人預防再插管的效益比較