|
[1] J. F. Pombo, B. L. Troy, and R. O. RUSSELL JR, “Left ventricular volumes and ejection fraction by echocardiography,” Circulation, vol. 43, no. 4, pp. 480–490, 1971. [2] M. M. Redfield, S. J. Jacobsen, J. C. Burnett, D. W. Mahoney, K. R. Bailey, and R. J. Rodeheffer, “Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic,” Jama, vol. 289, no. 2, pp. 194–202, 2003. [3] H. Mehta, A. Armstrong, K. Swett, S. J. Shah, M. A. Allison, B. Hurwitz, S. Bangdiwala, R. Dadhania, D. W. Kitzman, W. Arguelles et al., “Burden of systolic and diastolic left ventricular dysfunction among hispanics in the united states: insights from the echocardiographic study of latinos,” Circulation: Heart Failure, vol. 9, no. 4, p. e002733, 2016. [4] P. Jong, S. Yusuf, M. F. Rousseau, S. A. Ahn, and S. I. Bangdiwala, “Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study,” The Lancet, vol. 361, no. 9372, pp. 1843–1848, 2003. [5] T. A. McDonagh, K. McDonald, and A. S. Maisel, “Screening for asymptomatic left ventricular dysfunction using b-type natriuretic peptide,” Congestive Heart Failure, vol. 14, pp. 5–8, 2008. [6] A. Taebi, B. E. Solar, A. J. Bomar, R. H. Sandler, and H. A. Mansy, “Recent advances in seismocardiography,” Vibration, vol. 2, no. 1, pp. 64–86, 2019. [7] P. Castiglioni, A. Faini, G. Parati, and M. Di Rienzo, “Wearable seismocardiography,” in 2007 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE, 2007, pp. 3954–3957. [8] M. Jafari Tadi, E. Lehtonen, A. Saraste, J. Tuominen, J. Koskinen, M. Teräs, J. Airaksinen, M. Pänkäälä, and T. Koivisto, “Gyrocardiography: A new non-invasive monitoring method for the assessment of cardiac mechanics and the estimation of hemodynamic variables,” Scientific reports, vol. 7, no. 1, pp. 1–11, 2017. [9] S. Sieciński, P. S. Kostka, and E. J. Tkacz, “Gyrocardiography: A review of the definition, history, waveform description, and applications,” Sensors, vol. 20, no. 22, p. 6675, 2020. [10] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales, “Self-supervised representation learning: Introduction, advances, and challenges,” IEEE Signal Processing Magazine, vol. 39, no. 3, pp. 42–62, 2022. [11] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018. [12] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning. PMLR, 2020, pp. 1597–1607. [13] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9729–9738. [14] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al., “Bootstrap your own latent-a new approach to self-supervised learning,” Advances in neural information processing systems, vol. 33, pp. 21 271–21 284, 2020. [15] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020. [16] Z. I. Attia, S. Kapa, F. Lopez-Jimenez, P. M. McKie, D. J. Ladewig, G. Satam, P. A. Pellikka, M. Enriquez-Sarano, P. A. Noseworthy, T. M. Munger et al., “Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram,” Nature medicine, vol. 25, no. 1, pp. 70–74, 2019. [17] D. Adedinsewo, R. E. Carter, Z. Attia, P. Johnson, A. H. Kashou, J. L. Dugan, M. Albus, J. M. Sheele, F. Bellolio, P. A. Friedman et al., “Artificial intelligence-enabled ecg algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea,” Circulation: Arrhythmia and Electrophysiology, vol. 13, no. 8, p. e008437, 2020. [18] J. C. Jentzer, A. H. Kashou, Z. I. Attia, F. Lopez-Jimenez, S. Kapa, P. A. Friedman, and P. A. Noseworthy, “Left ventricular systolic dysfunction identification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients,” International journal of cardiology, vol. 326, pp. 114–123, 2021. [19] A. H. Kashou, J. R. Medina-Inojosa, P. A. Noseworthy, R. J. Rodeheffer, F. LopezJimenez, I. Z. Attia, S. Kapa, C. G. Scott, A. T. Lee, P. A. Friedman et al., “Artificial intelligence–augmented electrocardiogram detection of left ventricular systolic dysfunction in the general population,” in Mayo Clinic proceedings, vol. 96, no. 10. Elsevier, 2021, pp. 2576–2586. [20] B. O. d. F. Brito, Z. I. Attia, L. N. A. Martins, P. Perel, M. C. P. Nunes, E. C. Sabino, C. S. Cardoso, A. M. Ferreira, P. R. Gomes, A. Luiz Pinho Ribeiro et al., “Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in chagas disease patients–the sami-trop cohort,” PLoS neglected tropical diseases, vol. 15, no. 12, p. e0009974, 2021. [21] S. Katsushika, S. Kodera, M. Nakamoto, K. Ninomiya, S. Inoue, S. Sawano, N. Kakuda, H. Takiguchi, H. Shinohara, R. Matsuoka et al., “The effectiveness of a deep learning model to detect left ventricular systolic dysfunction from electrocardiograms,” International Heart Journal, vol. 62, no. 6, pp. 1332–1341, 2021. [22] Y.-C. Huang, Y.-C. Hsu, Z.-Y. Liu, C.-H. Lin, R. Tsai, J.-S. Chen, P.-C. Chang, H.-T. Liu, W.-C. Lee, H.-T. Wo et al., “Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction,” Frontiers in Cardiovascular Medicine, vol. 10, p. 1070641, 2023. [23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. [24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255. [25] D. Kiyasseh, T. Zhu, and D. A. Clifton, “CLOCS: Contrastive learning of cardiac signals across space, time, and patients,” in International Conference on Machine Learning. PMLR, 2021, pp. 5606–5615. [26] H. Chen, G. Wang, G. Zhang, P. Zhang, and H. Yang, “CLECG: A novel contrastive learning framework for electrocardiogram arrhythmia classification,” IEEE Signal Processing Letters, vol. 28, pp. 1993–1997, 2021. [27] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5, pp. 50–57, 2016. [28] J. Lewis and M. Fowler, “Microservices,” Mar 2014. [Online]. Available: https: //martinfowler.com/articles/microservices.html [29] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s—a publish/subscribe protocol for wireless sensor networks,” in 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08). IEEE, 2008, pp. 791–798.
|