跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳智伸
研究生(外文):CHEN, ZHI-SHEN
論文名稱:蜂王漿經高靜水壓處理之特性分析
論文名稱(外文):Characteristics of Royal Jelly Treated with High Hydrostatic Pressure
指導教授:彭及忠
指導教授(外文):PENG, CHI-CHUNG
口試委員:彭及忠吳明城王鐘毅
口試委員(外文):PENG, CHI-CHUNGWU, MING-CHENGWANG, CHUNG-YI
口試日期:2024-07-23
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:59
中文關鍵詞:蜂王漿蜜粉源癸烯酸抗氧化抗菌活性抗發炎超高壓技術
外文關鍵詞:royal jellyhoney powder sourcedecenoic acidAntioxidant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討了蜂王漿在高靜水壓處理下的特性變化。蜂王漿已被證實具有多種健康功效,如增強免疫力、促進組織再生、保護心血管和抗衰老等。蜂王漿中富含酚類和類黃酮等抗氧化劑,具抗氧化、延緩老化、抗發炎、加快傷口癒合、抑菌和控制血糖的作用。高靜水壓加工技術(High Pressure Processing, HPP)是一種先進的食品加工方法,能在高壓環境下顯著減少食品中的微生物數量,延長保質期,並改變食品中的酶活性,使其更適合特定用途或工藝。本研究旨在分析經HPP處理後蜂王漿中的總酚、類黃酮含量及抗氧化能力等成分的變化,並對不同蜜粉源的蜂王漿在不同壓力和時間下的特性進行比較。數據顯示,高靜水壓處理顯著提高了蜂王漿中癸烯酸(10-HDA)、總酚類及類黃酮含量。例如,600MPa處理20分鐘後,羅氏鹽膚木的10-HDA含量達到最高,為3.53 ± 0.01%,而未處理樣品為2.00 ± 0.01%。此外,300MPa處理20分鐘後,油菜的總酚類含量達到最高,為76.94 ± 2.19 mg of GAE/g,而未處理樣品為56.69 ± 0.96 mg of GAE/g。抗氧化分析顯示,經HPP處理後,蜂王漿的DPPH自由基清除能力和還原力均顯著增強,而酪胺酸酶抑制活性和α-葡萄糖苷酶抑制活性亦有所提升。這表明HPP處理能顯著提升蜂王漿的生物活性和功能,使其在食品和醫藥領域具有更大的應用潛力。
This study investigates the changes in the properties of royal jelly under high-pressure processing (HPP). Royal jelly has been proven to have multiple health benefits, such as enhancing immunity, promoting tissue regeneration, protecting cardiovascular health, and anti-aging effects. Royal jelly is rich in antioxidants, such as phenolics and flavonoids, which have antioxidant, anti-aging, anti-inflammatory, wound healing, antibacterial, and blood sugar control properties.High-pressure processing (HPP) is an advanced food processing method that significantly reduces the microbial content in food, extends shelf life, and alters enzyme activity under high-pressure conditions, making it more suitable for specific uses or processes. This study aims to analyze the changes in total phenolics, flavonoid content, and antioxidant capacity of royal jelly after HPP treatment and compare the characteristics of royal jelly from different nectar sources under different pressures and durations.The data show that HPP treatment significantly increased the content of 10-HDA, total phenolics, and flavonoids in royal jelly. For example, after treatment at 600 MPa for 20 minutes, the 10-HDA content in Rhus javanica L. reached the highest value of 3.53 ± 0.01%, compared to 2.00 ± 0.01% in untreated samples. Additionally, after treatment at 300 MPa for 20 minutes, the total phenolic content in Brassica napus reached the highest value of 76.94 ± 2.19 mg of GAE/g, compared to 56.69 ± 0.96 mg of GAE/g in untreated samples.Antioxidant analysis showed that the DPPH radical scavenging ability and reducing power of royal jelly were significantly enhanced after HPP treatment, along with improvements in tyrosinase inhibitory activity and α-glucosidase inhibitory activity. This indicates that HPP treatment can significantly enhance the bioactivity and functionality of royal jelly, making it more promising for applications in the food and pharmaceutical fields.
摘要...........................................................................i
ABSTRACT......................................................................ii
誌謝.........................................................................iii
目錄..........................................................................iv
表目錄........................................................................vi
附錄圖目錄...................................................................vii
第一章緒論.....................................................................1
第二章 文獻探討.................................................................2
2.1 蜜蜂...................................................................2
2.1.1 蜜蜂的生命週期..........................................................2
2.2 蜂王漿.................................................................3
2.2.1 簡介...................................................................3
2.2.2 蜂王漿的化學成分 ......................................................3
2.2.3 蜂王漿的收集及儲存......................................................4
2.2.4 蜂王漿國家標準.........................................................4
2.2.5 10-Hydroxy-2-Decenoic Acid (10-HDA)...................................4
2.2.6 蜂王漿功效..............................................................4
2.3 高壓加工技術............................................................5
2.3.1 簡介...................................................................5
2.3.2 原理...................................................................5
2.3.3 包裝...................................................................6
2.3.4 高壓加工應用萃取技術(HPE)..............................................6
2.4 黑色素細胞..............................................................6
2.4.1 黑色素生成途徑..........................................................6
2.4.2 酪胺酸酶...............................................................7
2.5 糖尿病.................................................................7
2.5.1 α-葡萄糖苷酶............................................................8
2.5.2 α-葡萄糖苷酶抑制劑......................................................8
第三章 材料與方法...............................................................9
3.1 實驗架構...............................................................9
3.2 實驗材料-蜂王漿樣品....................................................10
3.2.1 蜂王漿樣品.............................................................10
3.2.2 樣品高壓條件處理.......................................................10
3.3 蜂王漿理化特性分析.....................................................10
3.2.1 酸價測定..............................................................10
3.2.2 蜂王漿水溶性蛋白質含量分析..............................................10
3.2.3 蜂王漿總酚類含量分析...................................................10
3.2.4 蜂王漿類黃酮含量分析...................................................11
3.2.5 10-HDA含量測定........................................................11
3.4 測定蜂王漿抗氧化能力分析................................................11
3.4.1 樣品製備方法...........................................................11
3.4.2 2,2-Diphenyl-1-picrylhydrazyl (DPPH) 自由基清除能力分析................11
3.4.3 還原力測定.............................................................12
3.4.4 Ferric ion reducing antioxidant power ,FRAP 分析.....................12
3.5 蜂王漿活性測定.........................................................12
3.5.1 酪胺酸酶抑制活性分析...................................................12
3.5.2 α-葡萄糖苷酶抑制活性分析................................................12
3.6 抗菌活性測定...........................................................13
3.6.1 試驗菌株活化...........................................................13
3.6.2 菌株培養..............................................................13
3.6.3 抑菌圖譜測定...........................................................13
3.7 統計分析..............................................................13
第四章 結果....................................................................14
4.1 蜂王漿酸價分析.........................................................14
4.2 蜂王漿總蛋白質含量分析.................................................14
4.3 蜂王漿之10-羥基-2癸烯酸含量測定.........................................15
4.4 蜂王漿總酚類與類黃酮含量分析............................................15
4.5 蜂王漿之抗氧化能力分析.................................................16
4.7 蜂王漿之抗菌活性.......................................................19
第五章 討論...................................................................21
第六章 結論...................................................................22


1.坂本美穂, 竹葉和江, 笹本剛生, 草野友子, 林洋, 金井節子, et al., Determination of dimetridazole, metronidazole and ronidazole in salmon and honey by liquid chromatography coupled with tandem mass spectrometry. 食品衛生学雑誌, 2011. 52(1): p. 51-58.
2.Pan, F., X. Li, H. Chen, M. Liu, X. Fang, W. Peng, et al., Exploring the effect of high-pressure processing conditions on the deaggregation of natural major royal jelly proteins (MRJPs) fibrillar aggregates. Food Chemistry, 2024. 452: p. 139611.
3.Salazar-Olivo, L.A. and V. Paz-González, Screening of biological activities present in honeybee (Apis mellifera) royal jelly. Toxicology in Vitro, 2005. 19(5): p. 645-651.
4.Schmitzová, J., J. Klaudiny, Š. Albert, W. Schröder, W. Schreckengost, J. Hanes, et al., A family of major royal jelly proteins of the honeybee Apis mellifera L. Cellular and Molecular Life Sciences CMLS, 1998. 54(9): p. 1020-1030.
5.Kocot, J., M. Kiełczykowska, D. Luchowska-Kocot, J. Kurzepa, and I. Musik, Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxidative medicine and cellular longevity, 2018. 2018(1): p. 7074209.
6.Xue, X., L. Wu, and K. Wang, Chemical composition of royal jelly. Bee products-chemical and biological properties, 2017: p. 181-190.
7.Wytrychowski, M., S. Chenavas, G. Daniele, H. Casabianca, M. Batteau, S. Guibert, et al., Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. Journal of Food Composition and Analysis, 2013. 29(2): p. 126-133.
8.Pina, A., O. Begou, D. Kanelis, H. Gika, S. Kalogiannis, C. Tananaki, et al., Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography–tandem mass spectrometry. Journal of Chromatography a, 2018. 1531: p. 53-63.
9.Wang, X., M. Cao, and Y. Dong, Royal jelly promotes DAF-16-mediated proteostasis to tolerate β-amyloid toxicity in C. elegans model of Alzheimer's disease. Oncotarget, 2016. 7(34): p. 54183.
10.Stocker, A., P. Schramel, A. Kettrup, and E. Bengsch, Trace and mineral elements in royal jelly and homeostatic effects. Journal of Trace Elements in Medicine and Biology, 2005. 19(2-3): p. 183-189.
11.Wessler, I., H.-A. Gärtner, R. Michel-Schmidt, C. Brochhausen, L. Schmitz, L. Anspach, et al., Honeybees produce millimolar concentrations of non-neuronal acetylcholine for breeding: possible adverse effects of neonicotinoids. PLoS One, 2016. 11(6): p. e0156886.
12.Marconi, E., M.F. Caboni, M.C. Messia, and G. Panfili, Furosine: a suitable marker for assessing the freshness of royal jelly. Journal of Agricultural and Food Chemistry, 2002. 50(10): p. 2825-2829.
13.Balkanska, R., Correlations of physicochemical parameters, antioxidant activity and total polyphenol content of fresh royal jelly samples. Int. J. Curr. Microbiol. App. Sci, 2018. 7(4): p. 3744-3750.
14.Kodai, T., K. Umebayashi, T. Nakatani, K. Ishiyama, and N. Noda, Compositions of royal jelly II. Organic acid glycosides and sterols of the royal jelly of honeybees (Apis mellifera). Chemical and Pharmaceutical Bulletin, 2007. 55(10): p. 1528-1531.
15.Honda, Y., Y. Araki, T. Hata, K. Ichihara, M. Ito, M. Tanaka, et al., 10‐Hydroxy‐2‐decenoic acid, the major lipid component of royal jelly, extends the lifespan of Caenorhabditis elegans through dietary restriction and target of rapamycin signaling. Journal of Aging Research, 2015. 2015(1): p. 425261.
16.Townsend, G. and C. Lucas, Chemical examination of the lipid fraction of royal jelly. Science, 1940. 92(2376): p. 43-43.
17.Kucharski, R., J. Maleszka, S. Foret, and R. Maleszka, Nutritional control of reproductive status in honeybees via DNA methylation. Science, 2008. 319(5871): p. 1827-1830.
18.Han, S.M., J.M. Kim, I.P. Hong, S.O. Woo, S.G. Kim, H.R. Jang, et al., Whitening Effect of Watersoluble Royal Jelly from South Korea. Korean Journal for Food Science of Animal Resources, 2015. 35(5): p. 707-713.
19.Peng, C.C., H.T. Sun, I.P. Lin, P.C. Kuo, and J.C. Li, The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor. Bmc Complementary and Alternative Medicine, 2017. 17: p. 8.
20.Vucevic, D., E. Melliou, S. Vasilijic, S. Gasic, P. Ivanovski, I. Chinou, et al., Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro. International immunopharmacology, 2007. 7(9): p. 1211-1220.
21.Blum, M.S., A.F. Novak, and S. Taber III, 10-hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science, 1959. 130(3373): p. 452-453.
22.Townsend, G.F., W.H. Brown, E.E. Felauer, and B. Hazlett, Studies on the in vitro antitumor activity of fatty acids: IV. The esters of acids closely related to 10-hydroxy-2-decenoic acid from royal jelly against transplantable mouse leukemia. Canadian journal of Biochemistry and Physiology, 1961. 39(11): p. 1765-1770.
23.Antinelli, J.-F., S. Zeggane, R. Davico, C. Rognone, J.-P. Faucon, and L. Lizzani, Evaluation of (E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly. Food chemistry, 2003. 80(1): p. 85-89.
24.Nagai, T. and R. Inoue, Preparation and the functional properties of water extract and alkaline extract of royal jelly. Food chemistry, 2004. 84(2): p. 181-186.
25.Izuta, H., M. Shimazawa, K. Tsuruma, Y. Araki, S. Mishima, and H. Hara, Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells. BMC complementary and alternative medicine, 2009. 9: p. 1-10.
26.Tseng, J.M., J.R. Huang, H.C. Huang, J.T. Tzen, W.M. Chou, and C.C. Peng, Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil‐body system. Biotechnology Progress, 2011. 27(1): p. 153-161.
27.Bílikova, K., S.-C. Huang, I.-P. Lin, J. Šimuth, and C.-C. Peng, Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides, 2015. 68: p. 190-196.
28.Viuda‐Martos, M., Y. Ruiz‐Navajas, J. Fernández‐López, and J. Pérez‐Álvarez, Functional properties of honey, propolis, and royal jelly. Journal of food science, 2008. 73(9): p. R117-R124.
29.Okuda, H., K. Kameda, C. Morimoto, Y. Matsuura, M. Chikaki, and M. Jiang, Studies on insulin-like substances and inhibitory substances toward angiotensin-converting enzyme in royal jelly. 1998.
30.Shinoda, M., Biochemical studies on a vasodilative factor in royal jelly. 1978.
31.Nagai, T., M. Sakai, R. Inoue, H. Inoue, and N. Suzuki, Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food chemistry, 2001. 75(2): p. 237-240.
32.Vittek, J., Effect of royal jelly on serum lipids in experimental animals and humans with atherosclerosis. Experientia, 1995. 51: p. 927-935.
33.Ibrahim, A., M.A.A. Eldaim, and M.M. Abdel-Daim, Nephroprotective effect of bee honey and royal jelly against subchronic cisplatin toxicity in rats. Cytotechnology, 2016. 68(4): p. 1039-1048.
34.Ramadan, M.F. and A. Al-Ghamdi, Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of functional foods, 2012. 4(1): p. 39-52.
35.Garcia-Amoedo, L.H. and L.B.d. Almeida-Muradian, Physicochemical composition of pure and adulterated royal jelly. Química Nova, 2007. 30: p. 257-259.
36.Sabatini, A.G., G.L. Marcazzan, M.F. Caboni, S. Bogdanov, and L.B.d. Almeida-Muradian, Quality and standardisation of royal jelly. Journal of ApiProduct and ApiMedical Science, 2009. 1(1): p. 1-6.
37.Cornara, L., M. Biagi, J. Xiao, and B. Burlando, Therapeutic properties of bioactive compounds from different honeybee products. Frontiers in pharmacology, 2017. 8: p. 261216.
38.Baltrusch, S., The role of neurotropic B vitamins in nerve regeneration. BioMed Research International, 2021. 2021(1): p. 9968228.
39.Mazur-Bialy, A.I., B. Buchala, and B. Plytycz, Riboflavin deprivation inhibits macrophage viability and activity–a study on the RAW 264.7 cell line. British journal of nutrition, 2013. 110(3): p. 509-514.
40.Hu, F.L., K. Bíliková, H. Casabianca, G. Daniele, F.S. Espindola, M. Feng, et al., Standard methods for Apis mellifera royal jelly research. Journal of Apicultural Research, 2019. 58(2): p. 68.
41.Park, M.J., B.Y. Kim, Y.J. Deng, H.G. Park, Y.S. Choi, K.S. Lee, et al., Antioxidant capacity of major royal jelly proteins of honeybee (Apis mellifera) royal jelly. Journal of Asia-Pacific Entomology, 2020. 23(2): p. 445-448.
42.Mújica-Paz, H., A. Valdez-Fragoso, C.T. Samson, J. Welti-Chanes, and J.A. Torres, High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods. Food and Bioprocess Technology, 2011. 4(6): p. 969-985.
43.Barbosa-Cánovas, G.V. and P. Juliano, Food sterilization by combining high pressure and thermal energy, in Food engineering: Integrated approaches. 2008, Springer. p. 9-46.
44.Huang, H.W., C.P. Hsu, and C.Y. Wang, Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal, 2020. 28(1): p. 1-13.
45.Ayvaz, H., V. Balasubramaniam, and T. Koutchma, High pressure effects on packaging materials. High pressure processing of food: principles, technology and applications, 2016: p. 73-93.
46.Mustafa, A. and C. Turner, Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica chimica acta, 2011. 703(1): p. 8-18.
47.Shouqin, Z., Z. Junjie, and W. Changzhen, Novel high pressure extraction technology. International journal of Pharmaceutics, 2004. 278(2): p. 471-474.
48.Wang, C.-Y., H.-W. Huang, C.-P. Hsu, and B.B. Yang, Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 2016. 56(4): p. 527-540.
49.Xi, J., Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 2006. 29(6): p. 736-739.
50.Corrales, M., S. Toepfl, P. Butz, D. Knorr, and B. Tauscher, Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies, 2008. 9(1): p. 85-91.
51.Guo, X., D. Han, H. Xi, L. Rao, X. Liao, X. Hu, et al., Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydrate polymers, 2012. 88(2): p. 441-448.
52.Shin, J.-S., S.-C. Ahn, S.-W. Choi, D.-U. Lee, B.-Y. Kim, and M.-Y. Baik, Ultra high pressure extraction (UHPE) of ginsenosides from Korean Panax ginseng powder. Food Science and Biotechnology, 2010. 19: p. 743-748.
53.Xi, J., D. Shen, S. Zhao, B. Lu, Y. Li, and R. Zhang, Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics, 2009. 382(1-2): p. 139-143.
54.Jun, X., S. Deji, L. Ye, and Z. Rui, Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control, 2011. 22(8): p. 1473-1476.
55.Jimbow, K., W.C. Quevedo, Jr., T.B. Fitzpatrick, and G. Szabo, Some aspects of melanin biology: 1950-1975. J Invest Dermatol, 1976. 67(1): p. 72-89.
56.Cui, Y.Z. and X.Y. Man, Biology of melanocytes in mammals. Front Cell Dev Biol, 2023. 11: p. 1309557.
57.Borovansky, J. and P.A. Riley, Melanins and melanosomes: biosynthesis, structure, physiological and pathological functions. 2011: John Wiley & Sons.
58.Passeron, T., S.G. Coelho, Y. Miyamura, K. Takahashi, and V.J. Hearing, Immunohistochemistry and in situ hybridization in the study of human skin melanocytes. Experimental dermatology, 2007. 16(3): p. 162-170.
59.Thody, A.J., E.M. Higgins, K. Wakamatsu, S. Ito, S.A. Burchill, and J.M. Marks, Pheomelanin as well as eumelanin is present in human epidermis. Journal of Investigative Dermatology, 1991. 97(2): p. 340-344.
60.Lamoreux, M.L., K. Wakamatsu, and S. Ito, Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Research, 2001. 14(1): p. 23-31.
61.Slominski, A., G. Moellmann, E. Kuklinska, A. Bomirski, and J. Pawelek, Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-dopa. Journal of cell science, 1988. 89(3): p. 287-296.
62.SLOMINSKI, A., G. MOELLMANN, and E. KUKLINSKA, L‐tyrosine, L‐DOPA, and tyrosinase as positive regulators of the subcellular apparatus of melanogenesis in Bomirski Ab amelanotic melanoma cells. Pigment cell research, 1989. 2(2): p. 109-116.
63.Slominski, A., M.A. Zmijewski, and J. Pawelek, L‐tyrosine and L‐dihydroxyphenylalanine as hormone‐like regulators of melanocyte functions. Pigment cell & melanoma research, 2012. 25(1): p. 14-27.
64.Hossain, U., A.K. Das, S. Ghosh, and P.C. Sil, An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology, 2020. 145: p. 111738.
65.Li, M., L.J. Song, and X.Y. Qin, Advances in the cellular immunological pathogenesis of type 1 diabetes. Journal of cellular and molecular medicine, 2014. 18(5): p. 749-758.
66.Rashid, K., S. Chowdhury, S. Ghosh, and P.C. Sil, Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochemical Pharmacology, 2017. 143: p. 140-155.
67.Zimmet, P., K. Alberti, and J. Shaw, Global and societal implications of the diabetes epidemic. Nature, 2001. 414(6865): p. 782-787.
68.Esser, N., N. Paquot, and A.J. Scheen, Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert opinion on investigational drugs, 2015. 24(3): p. 283-307.
69.Bello, N.A., M.A. Pfeffer, H. Skali, J.B. McGill, J. Rossert, K.A. Olson, et al., Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia. BMJ Open Diabetes Research and Care, 2014. 2(1): p. e000011.
70.Jiao, Y., D. Hua, D. Huang, Q. Zhang, and C. Yan, Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food & function, 2018. 9(7): p. 3997-4007.
71.Liu, Z. and S. Ma, Recent Advances in Synthetic α-Glucosidase Inhibitors. ChemMedChem, 2017. 12(11): p. 819-829.
72.Krentz, A.J. and C.J. Bailey, Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs, 2005. 65: p. 385-411.
73.Patil, P., S. Mandal, S.K. Tomar, and S. Anand, Food protein-derived bioactive peptides in management of type 2 diabetes. European journal of nutrition, 2015. 54: p. 863-880.
74.Kunugi, H. and A. Mohammed Ali, Royal jelly and its components promote healthy aging and longevity: from animal models to humans. International journal of molecular sciences, 2019. 20(19): p. 4662.
75.Ahmad, S., M.G. Campos, F. Fratini, S.Z. Altaye, and J. Li, New insights into the biological and pharmaceutical properties of royal jelly. International journal of molecular sciences, 2020. 21(2): p. 382.
76.Fujiwara, S., J. Imai, M. Fujiwara, T. Yaeshima, T. Kawashima, and K. Kobayashi, A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. Journal of biological chemistry, 1990. 265(19): p. 11333-11337.
77.Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976. 72(1-2): p. 248-254.
78.Slinkard, K. and V.L. Singleton, Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 1977. 28(1): p. 49-55.
79.Liu, J.-R., Y.-C. Yang, L.-S. Shi, and C.-C. Peng, Antioxidant properties of royal jelly associated with larval age and time of harvest. Journal of agricultural and food chemistry, 2008. 56(23): p. 11447-11452.
80.Koshio, S. and L.B. de Almeida-Muradian, HPLC application for 10-HDA determination in pure royal jelly and honey with royal jelly. Quimica Nova, 2003. 26(5): p. 670-673.
81.Nagai, T., R. Inoue, N. Suzuki, and T. Nagashima, Antioxidant properties of enzymatic hydrolysates from royal jelly. Journal of medicinal food, 2006. 9(3): p. 363-367.
82.Otmani, I., C. Abdennour, A. Dridi, L. Kahalerras, and A. Halima-Salem, Characteristics of the bitter and sweet honey from Algeria Mediterranean coast. Vet World, 2019. 12(4): p. 551-557.
83.Aliyu, M., S. Ibrahim, H.M. Inuwa, A.B. Sallau, O. Abbas, I.A. Aimola, et al., Ameliorative Effects of Acacia Honey against Sodium Arsenite-Induced Oxidative Stress in Some Viscera of Male Wistar Albino Rats. Biochem Res Int, 2013. 2013: p. 502438.
84.Zainol, M.I., K. Mohd Yusoff, and M.Y. Mohd Yusof, Antibacterial activity of selected Malaysian honey. BMC Complementary and Alternative Medicine, 2013. 13(1): p. 129.
85.Liu, Q., R.F. Wang, X.Y. Zhao, Y. Ma, D. Wang, and B.B. Zhang, Effect of High Hydrostatic Pressure Processing on Qualities of Strawberry Juice. Advanced Materials Research, 2014. 894: p. 305-310.
86.Chou, W.-M., H.-C. Liao, Y.-C. Yang, and C.-C. Peng, Evaluation of Honey Quality with Stored Time and Temperatures. Journal of Food and Nutrition Research, 2020. 8(10): p. 591-599.
87.Pan, F., X. Li, H. Chen, M. Liu, X. Fang, W. Peng, et al., Exploring the effect of high-pressure processing conditions on the deaggregation of natural major royal jelly proteins (MRJPs) fibrillar aggregates. Food Chem, 2024. 452: p. 139611.
88.Shouqin, Z., X. Jun, and W. Changzheng, High hydrostatic pressure extraction of flavonoids from propolis. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2005. 80(1): p. 50-54.
89.Prasad, K.N., B. Yang, M. Zhao, N. Ruenroengklin, and Y. Jiang, Application of ultrasonication or high‐pressure extraction of flavonoids from litchi fruit pericarp. Journal of Food Process Engineering, 2009. 32(6): p. 828-843.
90.Tokuşoğlu, Ö., H. Alpas, and F. Bozoğlu, High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative food science & emerging technologies, 2010. 11(2): p. 250-258.
91.Fei, Y., Z. Yang, S. Niazi, G. Chen, M.A. Nasir, I.M. Khan, et al., Proteolysis of β-Lactoglobulin Assisted by High Hydrostatic Pressure Treatment for Development of Polysaccharides-Peptides Based Coatings and Films. Coatings, 2022. 12(10): p. 1577.
92.Thaksala, H.K.S., C.O. Hettiarachchi, K.D. Prasanna, and P. Gunathilake, Journal of Food and Bioprocess Engineering. 2020.
93.Kim, D. and G.D. Han, High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innovative Food Science & Emerging Technologies, 2012. 16: p. 191-197.
94.Rodrigues, D., A.C. Freitas, R. Queirós, T.A. Rocha‐Santos, J.A. Saraiva, A.M. Gomes, et al., Bioactive polysaccharides extracts from Sargassum muticum by high hydrostatic pressure. Journal of Food Processing and Preservation, 2017. 41(1): p. e12977.
95.Chaikham, P. and P. Prangthip, Alteration of antioxidative properties of longan flower-honey after high pressure, ultra-sonic and thermal processing. Food Bioscience, 2015. 10: p. 1-7.
96.Nayak, P.K., K. Rayaguru, and K. Radha Krishnan, Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. Journal of the Science of Food and Agriculture, 2017. 97(5): p. 1404-1411.
97.Patras, A., N. Brunton, S. Da Pieve, F. Butler, and G. Downey, Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative food science & emerging technologies, 2009. 10(1): p. 16-22.
98.Andrés, V., L. Mateo-Vivaracho, E. Guillamón, M.J. Villanueva, and M.D. Tenorio, High hydrostatic pressure treatment and storage of soy-smoothies: Colour, bioactive compounds and antioxidant capacity. LWT - Food Science and Technology, 2016. 69: p. 123-130.
99.Xi, J., D. Shen, Y. Li, and R. Zhang, Ultrahigh pressure extraction as a tool to improve the antioxidant activities of green tea extracts. Food Research International, 2011. 44(9): p. 2783-2787.
100.Huang, H.-W., C.-P. Hsu, and C.-Y. Wang, Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 2020. 28(1): p. 1-13.
101.Tolleson, W.H., Human Melanocyte Biology, Toxicology, and Pathology. Journal of Environmental Science and Health, Part C, 2005. 23(2): p. 105-161.

電子全文 電子全文(網際網路公開日期:20241231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top