跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宜玲
研究生(外文):LIN, YI-LING
論文名稱:基於Django網路框架的刀具管理系統開發
論文名稱(外文):Development of Tool Management System Based on Django Web Framework
指導教授:李炳寅李炳寅引用關係陳進益陳進益引用關係
指導教授(外文):LEE, BEAN-YINCHEN, JENN-YIH
口試委員:李炳寅張信良張文陽林忠志陳明飛王永成張嘉隆
口試委員(外文):LEE, BEAN-YINCHANG, SHINN-LIANGCHANG, WEN-YANGLIN, CHUNG-CHIHCHEN,MING-FEIWANG, YUNG-CHENGCHANG, CHIA-LUNG
口試日期:2023-05-13
學位類別:博士
校院名稱:國立虎尾科技大學
系所名稱:動力機械工程系機械與機電工程博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:81
中文關鍵詞:NoSQL數據庫刀具管理系統圖檔交換格式多項式網路Focas2
外文關鍵詞:NoSQL databaseTool management systemDrawing exchange format (DXF)Polynomial networkFocas2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了在小而多樣化的市場中保持工藝穩定性和提高生產良率,數字化設備和通過物聯網智能管理工具是必要的。儘管許多傳統製造工廠已經使用物聯網技術,但由於缺乏系統化的工具,無法管控每個切削刀具的追踪流程和狀態,這很容易導致機器停機,甚至因刀具相關問題而損壞機器主軸。因此,本研究中的刀具管理系統(Tool Management System, TMS)是基於瀏覽器/服務器網頁架構設計的,旨在使用非關聯式數據庫來儲存具有非固定結構的刀具數據。TMS整合成兩種管理模式:刀具管理和工程開發,刀具管理的功能主要是通過特定的代碼查詢數據庫,保存刀具的使用記錄,使得加工人員、採購人員、倉儲人員和管理者能夠在每個階段獲得有關每個工具的有用信息,例如刀具的剩餘使用壽命、刀具庫存量以及刀具線上或離線的存放位置等。本文以FANUC CNC控制器為實例,定義宏程序及編寫PMC ladder等方法解析刀具在機台的在線時間、累積加工時間以及出線時間,且能通過Focas2與控制器進行連接取得切削參數,將其輸入至多項式網路即可計算出刀具剩餘使用壽命,避免在刀具壽命終止前更換,造成成本浪費。除了記錄刀具的使用情況,當工具的庫存水平低於安全水平時,會立即通知採購員向工具供應商下訂單,以縮短準備工具的時間。另一方面,工程開發的功能是為CAD/CAM製造人員設計的,可以通過TMS查詢刀具庫存,隨時可以獲得合適的匹配部件,而圖檔交換格式文件用於組裝工具組件時能在CAM軟體中生成3D模型以進行模擬測試,減少作業時間,生產人員就能根據模擬得到的刀具清單進行刀具準備;測量部門的工作人員也能同步測量和更新TMS的刀具補償數據。因此,操作員可以快速地將刀具放入刀庫或刀塔上的相應編號,並通過TCP/IP更新CNC控制器的正確補償值。
To maintain process stability and yield improvement in a small and diverse market, digitization equipment and managing tools intelligently through the IoT are necessary. Although many traditional manufacturing factories have used IoT technologies, they cannot control the tracking flow and condition of each cutting tool owing to a lack of systematic tools. This easily causes machine downtime or even damage to the machine spindle due to tool-related problems. Therefore, the tool management system (TMS) in this study is designed based on a browser/server web architecture and is designed to use a non-relational database for storing tool data with a non-fixed structure. The TMS is proposed to integrate two management modes: tool management and engineering development. The functions of tool management are mainly about querying the database through specific codes and keeping the usage records of tools. It enables processing staff, purchasing staff, warehousing staff, and administrators to have useful information on each tool at each stage, such as remaining useful life (RUL), the amount of tool inventory, the storage location of the online or offline tools, and so on. This thesis takes the FANUC CNC controller as an example, analyzing the online time, cumulative machining time, and offline time of the tools on the machine by defining the macro program and writing PMC ladder. Moreover, the user can input cutting parameters from controller through Focas2 to calculate the RUL through a polynomial network, so as to avoid replacement before termination of the tool life, which will cause cost waste. In addition to recording the usage of the cutting tools, when the inventory level of the tools is lower than the safety level, the purchaser is immediately notified to place an order with the tool supplier for shortening the tool preparation time. On the other hand, the functions of the engineering development are designed for CAD/CAM manufacturing staff to query the tool inventory through the TMS to obtain suitable matching components in real-time. The drawing exchange format (DXF) files are used to assemble tool components and generate 3D models in CAM software for simulation tests. Then, the production staff prepares the tools according to the tool list from the simulation. The staff of the measurement department also measures and updates the tool compensation data of the TMS. Thus, the operator quickly places the tool into the corresponding number on the tool magazine or turret and update the correct compensation value of the CNC controller via TCP/IP.
摘要....................................................i
Abstract...............................................ii
誌謝...................................................iii
目錄...................................................iv
表目錄..................................................vi
圖目錄..................................................vii
第一章 緒論..............................................1
1.1 研究動機與目的...................................1
1.2 文獻回顧.........................................1
1.2.1 刀具管理系統研究..................................1
1.2.2 資料庫應用........................................1
1.2.3 2D視圖轉換3D零件檔................................2
1.3 研究流程..........................................2
1.4 論文架構..........................................3
第二章 刀具管理系統框架....................................5
2.1 Web應用框架.......................................5
2.2.1 關注點分離(Separation of concerns)................6
2.2.2 MVC架構簡介.......................................6
2.2.3 Django的MTV架構簡介...............................6
2.2 NoSQL資料庫系統概述................................8
2.2.1 大數據與雲端計算...................................8
2.2.2 分片集群(Sharded Cluster).........................9
2.2.3 數據分片.........................................11
2.2.4 MongoDB副本集(Replica Set).......................14
第三章 智慧化預估系統整合..................................19
3.1 工件材料的機械性質與刀具幾何的關係..................19
3.2 刀具壽命預測系統..................................21
3.3 預測系統整合.....................................22
第四章 刀具管理系統功能...................................24
4.1 刀具管理系統介面集成..............................24
4.1.1 ERP數據整合......................................24
4.1.2 NX CAM整合.......................................24
4.1.3 ZOLLER系統整合...................................24
4.2 刀具基本數據建立..................................24
4.2.1 刀具登錄.........................................25
4.2.2 切削參數管理.....................................27
4.2.3 編碼系統.........................................27
4.3 庫存管理.........................................29
4.3.1 刀具借出/歸還....................................30
4.3.2 刀具組合/拆卸....................................30
4.3.3 庫存預警/盤點....................................33
4.3.4 儲位管理.........................................34
4.4 生產管理.........................................36
4.4.1 DXF切削刀具模型生成...............................37
4.4.2 整合Zoller刀具量測儀..............................40
4.4.3 FANUC控制系統整合.................................42
4.5 統計分析.........................................48
4.5.1 刀具使用率分析....................................48
4.5.2 刀具成本分析......................................49
4.5.3 刀具故障率分析....................................49
4.5.4 刀具壽命統計......................................50
4.6 系統維護.........................................51
4.6.1 數據備份.........................................51
4.6.2 安全管理.........................................52
4.6.3 性能優化.........................................54
4.6.4 系統更新.........................................55
第五章 系統操作實例與驗證..................................56
5.1 刀具資訊管理......................................56
5.2 生產任務管理與CAM編程.............................62
5.3 性能測試.........................................63
5.3.1 查詢數據測試.....................................64
5.3.2 新增數據測試.....................................65
5.3.3 更新數據測試.....................................66
5.3.4 刪除數據測試.....................................68
第六章 結論與未來展望....................................70
6.1 結論............................................70
6.2 未來展望........................................70
參考文獻 ...............................................71
Extended Abstract......................................76
1. Introduction...................................77
2. Research Methodology...........................77
3. Experimental results and verification..........79
4. Conclusions....................................81

[1]Kuchinic, A.E., Seidmann, A., 1988, “Tool management in automated manufacturing: operational issues and mathematical models”, Proceeding of International Industrial Engineering Conference, 379-382.
[2]Svinjarević, G., Stoić, A., Kopac, J., 2007, “Implementation of cutting tool management system”, Journal of Achievements in Materials and Manufacturing Engineering, 23(1), 99-102.
[3]Zhu, Y., Wu, J., Wu, J., and Liu, S., 2022, “Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion”, Reliability Engineering & System Safety, 218, 108179. https://doi.org/10.1016/j.ress.2021.108179
[4]Archard, J. F., 1953, “Contact and rubbing of flat surfaces”, Journal of Applied Physics, 24(8), 981-988. https://doi.org/10.1016/j.ress.2021.108179
[5]An, Q., Tao, Z., Xu, X., El Mansori, M., and Chen, M., 2020, “A data driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network”, Measurement, 154, 107461.
https://doi.org/10.1016/j.measurement.2019.107461
[6]Wang, Y., Zheng, L., Wang, Y., 2021, “Event-driven tool condition monitoring methodology considering tool life prediction based on industrial internet”, Journal of Manufacturing Systems, 58, 205-222. https://doi.org/10.1016/j.jmsy.2020.11.019
[7]Luo, W., Hu, T., Ye, Y., Zhang, C., and Wei, Y., 2020, “A hybrid predictive maintenance approach for CNC machine tool driven by digital twin”, Robotics and Computer-Integrated Manufacturing, 65, 101974. https://doi.org/10.1016/j.rcim.2020.101974
[8]Cai, W., Zhang, W., Hu, X., Liu, Y., 2020, “A hybrid information model based on long short-term memory network for tool condition monitoring”, Journal of Intelligent Manufacturing, 31(6), 1497-1510. https://doi.org/10.1007/s10845-019-01526-4
[9]Chandra, D. G., 2015, “Base analysis of NoSQL database”, Future Generation Computer Systems., 52, 13-21. https://doi.org/10.1016/j.future.2015.05.003
[10]Kvalheim, C., 2012, “Data Modeling: Sample E-Commerce System with MongoDB”, https://www.infoq.com/articles/data-model-mongodb/
[11]Ramesh, D., Khosla, E., Bhukya, S. N., 2016, “Inclusion of e-commerce workflow with NoSQL DBMS: MongoDB document store”, Proceeding of the International Conference on Computational Intelligence and Computing Research (ICCIC).
https://doi.org/10.1109/iccic.2016.7919652
[12]Damaiyanti, T. I., Imawan, A., Indikawati, F. I., Choi, Y.-H., and Kwon, J., 2017, “A similarity query system for road traffic data based on a NoSQL document store”, Journal of Systems and Software, 127, 28–51. https://doi.org/10.1016/j.jss.2017.01.016
[13]Hu, C., Zhu, X., Zhou, Y., 2018, “The use of NoSQL in product traceability system construction”, Proceeding of the International Conference on Information Science and Control Engineering (ICISE), 574–577. https://doi.org/10.1109/ICISCE.2018.00124
[14]Catarinucci, L., de Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M. L., and Tarricone, L., 2015, “An IOT-aware architecture for smart healthcare systems”, IEEE Internet of Things Journal, 2(6), 515-526. https://doi.org/10.1109/jiot.2015.2417684.
[15]Tsai, C., Shin, W. Y., Lu, Y.S., Huang, J. L., Yeh, L.Y. 2019, “Design of a data collection system with data compression for small manufacturers in industrial IoT environments”, Proceeding of the 20th Asia-Pacific Network Operations and Management Symposium, 1-4.
[16]Sukimin, Z., Haron, H., 2008, “Geometric entities information for feature extraction of solid model based on DXF file,” International Symposium on Information Technology.
https://doi.org/10.1109/itsim.2008.4632024
[17]Dimri, J., Gurumoorthy, B., 2005, “Handling sectional views in volume-based approach to automatically construct 3D solid from 2D views”, Computer-Aided Design, 37(5), 485-495. https://doi.org/https://doi.org/10.1016/j.cad.2004.10.007
[18]Çiçek, A., Gülesın, M., 2004, “Reconstruction of 3D models from 2D orthographic views using solid extrusion and revolution”, Journal of Materials Processing Technology, 152(3), 291-298. https://doi.org/10.1016/j.jmatprotec.2004.04.368
[19]Brookes, K. J. A., 2019, “ISO 13399 What is it and why do we need it”, Metal Powder Report, 74(6), 305-307. https://doi.org/10.1016/j.mprp.2019.08.005
[20]Stack Overflow Developer Survey 2022,
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe-learn
[21]mdn web docs,
https://developer.mozilla.org/zh-TW/docs/Learn/Server-side/Django/Introduction
[22]Greatness, M., 2022, “What is Django MVT Architecture? what differs MVT from MVC Architecture?”, DEV Community.
https://dev.to/great_devxy/what-is-django-mvt-architecture-what-differs-mvt-from-mvc-architecture-3ahg
[23]傳統 MVC 模式與 Django MTV 模式介紹與比較
https://mropengate.blogspot.com/2015/08/mvcdjangomtv.html
[24]MongoDB Documentation, https://www.mongodb.com/docs/manual/sharding/
[25]MongoDB Documentation, https://www.mongodb.com/docs/manual/replication/
[26]Venkat Nagappan, https://github.com/justmeandopensource/learn-mongodb
[27]MongoDB Documentation,
https://www.mongodb.com/docs/manual/core/read-preference/
[28]賴昱勝,2021,端銑刀刀刃口幾何角度預測模型之建構,國立虎尾科技大學機械與電腦輔助工程研究所,碩士論文
[29]Juan, H., Yu, S. F., Lee, B. Y., 2003, “The optimal cutting-parameter selection of production cost in HSM for SKD61 tool steels”, International Journal of Machine Tools and Manufacture, 43(7), 679-686. https://doi.org/10.1016/s0890-6955(03)00038-5
[30]Bourdim M., Bourdim A., Kerrouz S., 2017, “Influence of cutting parameters on cutting forces”. International Journal of Materials, 4, 26-30.
[31]https://www.mongodb.com/docs/manual/core/gridfs/
[32]ISO 13399切削刀具數據表達與交換,2007
[33]Li, H., Yang, X., 2012, “Development of cutting tools information coding rules for the tools management system”, Proceeding of the 8th International Conference on Information Science and Digital Content Technology, 2, 397-400.
[34]Sukimin, Z., Haron, H., 2008, “Geometric entities information for feature extraction of solid model based on DXF file”, International Symposium on Information Technology. https://doi.org/10.1109/itsim.2008.4632024
[35]Dimri, J., Gurumoorthy, B., 2005, “Handling sectional views in volume-based approach to automatically construct 3D solid from 2D views”, Computer-Aided Design, 37(5), 485-495. https://doi.org/https://doi.org/10.1016/j.cad.2004.10.007
[36]FANUC數控系統中PMC的應用
[37]BEIJING-FANUC PMC MODEL PA1/SA1/SA3梯形圖語言編程說明書,2001 https://fs.gongkong.com/files/technicalData/200707/8-9739-161370EDFB14.pdf
[38]Brierley, J.A., Cowton, C.J., Drury, C., 2006, “A comparison of product costing practices in discrete-part and assembly manufacturing and continuous production process manufacturing”, International Journal of Production Economics, 100(2), 314-321.
https://doi.org/10.1016/j.ijpe.2004.12.020
[39]Daschbach, J. M., Apgar, H., 1988, “Design analysis through techniques of parametric cost estimation”, Engineering Costs and Production Economics, 14(2), 87-93.
https://doi.org/10.1016/0167-188x(90)90111-t
[40]Cavalieri, S., Maccarrone, P., Pinto, R., 2004, “Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry”, International Journal of Production Economics, 91(2), 165-177.
https://doi.org/10.1016/j.ijpe.2003.08.005
[41]Johnson, M., Kirchain, R., 2009, “Quantifying the effects of parts consolidation and development costs on material selection decisions: A process-based costing approach”, International Journal of Production Economics, 119(1), 174-186.
https://doi.org/10.1016/j.ijpe.2009.02.003
[42]Curran, R., Raghunathan, S., Price, M., 2004, “Review of aerospace engineering cost modelling: the genetic causal approach”, Progress in Aerospace Sciences, 40(8), 487-534.
https://doi.org/10.1016/j.paerosci.2004.10.001
[43]Asiedu, Y., Gu, P., 1998, “Product life cycle cost analysis: state of the art review”, International Journal of Production Research, 36(4), 883-908.
https://doi.org/10.1080/002075498193444
[44]Niazi, A., Dai, J. S., Balabani, S., and Seneviratne, L., 2007, “A new overhead estimation methodology: a case study in an electrical engineering company”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(4), 699-710. https://doi.org/10.1243/09544054jem681
[45]Alami, D., ElMaraghy, W., 2021, “A cost benefit analysis for industry 4.0 in a job shop environment using a mixed integer linear programming model”, Journal of Manufacturing Systems, 59, 81-97. https://doi.org/10.1016/j.jmsy.2021.01.014
[46]Nentwich, C., Daub, R., 2022, “Cost-benefit analysis of industrial robot gear condition monitoring”, Procedia CIRP, 107, 143-148. https://doi.org/10.1016/j.procir.2022.04.024
[47]Dui, H., Lu, Y., Chen, L., 2024, “Importance-based system cost management and failure risk analysis for different phases in life cycle”, Reliability Engineering & System Safety, 242, 109785. https://doi.org/10.1016/j.ress.2023.109785
[48]Papathanasiou, D., Demertzis, K., Tziritas, N., 2023, “Machine failure prediction using survival analysis”, Future Internet, 15(5), 153. https://doi.org/10.3390/fi15050153
[49]Moat, G., Coleman, S., 2021, “Survival analysis and predictive maintenance models for non-censored assets in facilities management”, Proceedings of the 2021 IEEE International Conference on Big Data.
https://doi.org/10.1109/bigdata52589.2021.9671625
[50]Dong, Y., Xia, T., Fang, X., Zhang, Z., and Xi, L., 2019, “Prognostic and health management for adaptive manufacturing systems with online sensors and flexible structures”, Computers & Industrial Engineering, 133, 57-68.
https://doi.org/10.1016/j.cie.2019.04.051
[51]Abu-Samah, A., Shahzad, M. K., Zamai, E., and Said, A. B., 2015, “Failure prediction methodology for improved proactive maintenance using bayesian approach”, IFAC-PapersOnLine, 48(21), 844-851. https://doi.org/10.1016/j.ifacol.2015.09.632
[52]Kumar, A., Chinnam, R. B., Tseng, F., 2019, “An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools”, Computers & Industrial Engineering, 128, 1008-1014. https://doi.org/10.1016/j.cie.2018.05.017
[53]Wang, J., Yin, H., 2019, “Failure rate prediction model of substation equipment based on Weibull distribution and time series analysis”, IEEE Access, 7, 298-309.
https://doi.org/10.1109/access.2019.2926159
[54]張石平、王智明、楊建國,2015,機台刀具可靠性及壽命評估,計算機集成製造系统,6, 1-9.
[55]陳保家、陳雪峰、李兵等,2011,Logistic回歸模型在機台刀具可靠性評估中的應用,機械工程學報,47(18), 158-163.
[56]Yu, J., 2018, “Tool condition prognostics using logistic regression with penalization and manifold regularization”, Applied Soft Computing, 64, 454-467.
https://doi.org/10.1016/j.asoc.2017.12.042
[57]Battifarano, M., 2018, “Predicting Future Machine Failure from Machine State Using Logistic Regression”.
[58]Li, H., Wang, Y., Zhao, P., Zhang, X., and Zhou, P., 2015, “Cutting tool operational reliability prediction based on acoustic emission and logistic regression model”, Journal of Intelligent Manufacturing, 26, 923-931. https://doi.org/10.1007/s10845-014-0941-4
[59]Vafaei, N., Ribeiro, R. A., and Camarinha-Matos, L. M., 2019, “Fuzzy early warning systems for condition based maintenance”, Computers & Industrial Engineering, 128, 736-746. https://doi.org/10.1016/j.cie.2018.12.056
[60]Marcello, B., Davide, C., Marco, F., Roberto, G., Leonardo, M., and Luca, P., 2020, “An ensemble-learning model for failure rate prediction”, Procedia Manufacturing, 42, 41-48. https://doi.org/10.1016/j.promfg.2020.02.022
[61]Bevilacqua, M., Braglia, M., Frosolini, M., and Montanari, R., 2005, “Failure rate prediction with artificial neural networks”, Journal of Quality in Maintenance Engineering, 11(3), 279-294. https://doi.org/10.1108/13552510510616487
[62]Kutyłowska, M., 2015, “Neural network approach for failure rate prediction”, Engineering Failure Analysis, 47, 41-48. https://doi.org/10.1016/j.engfailanal.2014.10.007
[63]Yang, B., Guo, K., Feng, B., Zhou, C., Sun, C., and Sun, J., 2020, “Reliability assessment of cutting tools based on zero-failure data”, https://doi.org/10.21203/rs.3.rs-25508/v1
[64]Gaddafee, M., Chinchanikar S., 2020, “An experimental investigation of cutting tool reliability and its prediction using Weibull and Gamma models: A comparative assessment”, Mater Today Proceed, 24, 1478-1487.
https://doi.org/10.1016/j.matpr.2020.04.467
[65]Sun, H., Liu, Y., Pan, J., Zhang, J., and Ji, W., 2020, “Enhancing cutting tool sustainability based on remaining useful life prediction”, Journal of Cleaner Production, 244, 118794.
https://doi.org/10.1016/j.jclepro.2019.118794

電子全文 電子全文(網際網路公開日期:20290619)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top