|
[1]教育部體育署. (2023). i運動資訊平台-運動現況統計. Retrieved from https://isports.sa.gov.tw/Apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2 [2]Wang, Y., Zhao, Y., Chan, R. H. M., & Li, W. J. (2018). Volleyball skill assessment using a single wearable micro inertial measurement unit at wrist. IEEE Access, 6, 13758-13765. https://doi.org/10.1109/ACCESS.2018.2792220 [3]Pan, T. -Y., Tsai, W. -L., Chang, C. -Y., Yeh, C. -W., & Hu, M. -C. (2022). A hierarchical hand gesture recognition framework for sports referee training-based EMG and accelerometer sensors. IEEE Transactions on Cybernetics, 52(5), 3172-3183. https://doi.org/10.1109/TCYB.2020.3007173 [4]Strohrmann, C., Harms, H., Kappeler-Setz, C., & Troster, G. (2012). Monitoring kinematic changes with fatigue in running using body-worn sensors. IEEE Transactions on Information Technology in Biomedicine, 16(5), 983-990. https://doi.org/10.1109/TITB.2012.2201950 [5]Ma, H., & Ding, X. (2022). Robust automatic camera calibration in badminton court recognition. In 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC) (pp. 893-898). https://doi.org/10.1109/IPEC54454.2022.9777532 [6]De Alwis, A. P. G., Dehikumbura, C., Konthawardana, M., Lalitharatne, T. D., & Dassanayake, V. P. C. (2020). Design and development of a badminton shuttlecock feeding machine to reproduce actual badminton shots. In 2020 5th International Conference on Control and Robotics Engineering (ICCRE) (pp. 73-77). [7]Chen, Y. -T., Yang, J. -F., & Tu, K. -C. (2021). Smart badminton detection system based on Scaled-YOLOv4. In 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) (pp. 1-2). https://doi.org/10.1109/ISPACS51563.2021.9651036 [8]Huang, T., Li, Y., & Zhu, W. (2021). An auxiliary training method for single-player badminton. In 2021 16th International Conference on Computer Science & Education (ICCSE) (pp. 441-446). https://doi.org/10.1109/ICCSE51940.2021.9569592 [9]Raina, A., Lakshmi, T. G., & Murthy, S. (2017). CoMBaT: Wearable technology based training system for novice badminton players. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 153-157). https://doi.org/10.1109/ICALT.2017.96 [10]Chiu, C. -H., Su, J. -L., & Lin, C. -M. (2023). The prediction of badminton flight trajectory based on an intelligent compensator. IEEE Access, 11, 32261-32271. https://doi.org/10.1109/ACCESS.2023.3262554 [11]Tai, W. -S., & Liu, K. -H. (2023). Badminton self-training system based on virtual reality. In 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 1659-1663). https://doi.org/10.1109/APSIPAASC58517.2023.10317490 [12]Wang, F., et al. (2017). Residual attention network for image classification. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 6450-6458). Honolulu, HI, USA. https://doi.org/10.1109/CVPR.2017.683 [13]Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679-698. https://doi.org/10.1109/TPAMI.1986.4767851 [14]Hart, P. E. (2009). How the Hough transform was invented [DSP History]. IEEE Signal Processing Magazine, 26(6), 18-22. https://doi.org/10.1109/MSP.2009.934181 [15]Shimrat, M. (1962). Algorithm 112: Position of point relative to polygon. Communications of the ACM, 5(8), 434. https://doi.org/10.1145/368637.368653 [16]Hormann, K., & Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Computational Geometry, 20(3), 131-144. https://doi.org/10.1016/S0925-7721(01)00012-8 [17]Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge University Press. [18]Goodfellow, I. (2014). Generative adversarial networks. arXiv preprint arXiv:1406.2661. [19]Nvidia. (2016). What’s the difference between artificial intelligence, machine learning and deep learning?. Retrieved from https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/ [20]LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541-551. [21]Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://api.semanticscholar.org/CorpusID:1915014 [22]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779-788). https://doi.org/10.1109/CVPR.2016.91 [23]WongKinYiu. (2024). YOLOv9: Implementation of paper - YOLOv9: Learning what you want to learn using programmable gradient information. Retrieved from https://github.com/WongKinYiu/yolov9 [24]Toshev, A., & Szegedy, C. (2014). DeepPose: Human pose estimation via deep neural networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1653-1660). https://doi.org/10.1109/CVPR.2014.214 [25]Google. (2019). Mediapipe. Retrieved from https://github.com/google-ai-edge/mediapipe [26]Cao, Z., Hidalgo, G., Simon, T., Wei, S. -E., & Sheikh, Y. (2021). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172-186. https://doi.org/10.1109/TPAMI.2019.2929257 [27]Gates, B. (1995). The road ahead. New York: Viking. [28]Ashton, K. (1999). That internet of things. RFID Journal, 22(1), 1-7. [29]IoT Analytics. (2024). State of IoT 2023: Number of connected IoT devices growing 16% to 16.7 billion globally. Retrieved from https://iot-analytics.com/number-connected-iot-devices/ [30]ETSI. (2013). Machine-to-Machine communications (M2M); Functional architecture. ETSI TS 102 690 V2.1.1 (2013-10). [31]陳運家, 洪友廉, 陳廣熙, 陳彩霞. (2000). 羽毛球教學手冊. Retrieved from https://resources.hkedcity.net/resource_detail.php?rid=643598345
|