跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳玉祥
研究生(外文):CHEN, YU-SHIANG
論文名稱:發展射出模具之流道設計優化方法
論文名稱(外文):Optimization of the Runner System Design for Injection Mold
指導教授:林忠志林忠志引用關係
指導教授(外文):LIN, CHUNG-CHIH
口試委員:邱薆蕙趙永清
口試委員(外文):CHIOU, AI-HUEICHAO, YUNG-CHING
口試日期:2023-10-20
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:50
中文關鍵詞:流動平衡流道設計射出成形MoldFlow冪律流體流變學
外文關鍵詞:Flow BalancedRunner DesignInjection MoldingMoldFlowRheologyPower Law Fluid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
以射出成形為例,利用多模穴模具生產零件具有相對較高的經濟效益,然而該種模具的平衡流道設計多半藉由經驗法則來調整各個流道的直徑,再根據其流動結果微調澆口尺寸或流道直徑,使其達到流動平衡;或者使用模流軟體(如MoldFlow)搭配試誤法來調整各流道直徑,使其達到流動平衡。上述介紹的方法須仰賴試誤法或經驗法則,其過程效率不佳。而在模穴數量不多的場合時,使用H型流道可以減少設計時間,但隨著模穴數量增加後,該種流道的設計會使用較多的熔膠材料於流道系統,並增加其廢料,使競爭力降低。故本研究提出以流變學為基礎的多模穴流道(魚骨型流道)設計法,以流動平衡的概念,可系統化分析並決定多模穴模具之各流道直徑的解析設計法。在已決定各個多模穴的排列下,以H型流道的平衡原理為基礎,魚骨型流道在分流點至相鄰的模穴,其融膠到達時間與流動壓力均相等,可得知其充填時間,藉由冪律流體流動方程式計算各段壓力,透過調整流道直徑,使融膠從分流點到相鄰模穴的澆口部位壓力一致,即可得到最佳化的流道直徑,再依序往下一個分流點進行設計,完成充填到各穴的流道直徑,最後利用MoldFlow進行驗證。根據本研究提出的方法進行案例設計與分析,分別有一模十二穴的流道系統、不同材料、同材料不同料溫、非對稱排列之流道系統等案例,並提出藉由融膠流動斜率設計推算剩餘時間均已完成。結果顯示本研究方法可以進行多模穴流道系統的設計,透過逐漸調整的設計法,減少經驗法則以及試誤法的過程時間,可以快速找到融膠同時到達澆口位置的流動平衡值就設計方法,而以融膠流動斜率的設計下,斜率越大,則可以改善融膠同時到達澆口的模穴充填不平衡問題。
For injection molding, utilizing a multi-cavity mold offers a high economic benefits for mass production. However, the design of balanced runner systems for such type of runner system often relies on empirical rules to adjust the diameters of each runners. Subsequently, the iteration of the runner diameter to achieve flow balance state costs lots of time. Mold flow analysis software (such as MoldFlow) provides an alternative to design the runner diameters and the design process will be efficient in case of a feasible assumption is defined. The H-type runner system can reduce the time to design in cases with less of cavities, the design of such runners wastes more material in the runner system and increases scrap when the number of cavities increases, thereby reducing competitiveness. This study proposes a rheology-based design method for multi-cavity runner systems (fishbone runner system) using the concept of flow and pressure balance. It allows for systematic analysis and determination of the analytical design method for the diameter of each runner in multi-cavity molds. Each branched runner in the fishbone runner system ensures an equivalent melt arrival time and flow pressure between the junction. By calculating the filling time through the power law fluid flow equation and determining the pressure for each segment, the runner diameter is adjusted to achieve consistent pressure at the gate between the divergent point and adjacent cavities. This optimization process yields the optimal runner diameter. The design then proceeds to the next divergent point, sequentially completing the runner diameter for each cavity. Finally, MoldFlow is utilized for validation. Using the method proposed in this study, case designs and analyses were conducted for various scenarios, including a 6-cavity runner system, different materials, the same material with different melt temperatures, and asymmetrically arranged runner systems. Furthermore, it was found that the calculation of remaining time can be achieved through the design of melt flow slope. The results indicate that the method proposed in this study enables the design of multi-cavity runner systems. Through a gradually adjusted design approach, the process time of empirical rules and trial and error methods can be reduced. This method allows for quickly identifying the flow balance value where the molten resin reaches the gate simultaneously. Moreover, by designing based on the melt flow slope, a larger slope can improve the issue of uneven filling of cavities caused by the molten resin reaching the gate simultaneously.
摘要............................................i
Abstract.......................................ii
誌謝...........................................iv
目錄............................................v
表目錄.........................................vi
圖目錄........................................vii
符號說明.......................................ix
第一章 緒論....................................1
1.1 前言.......................................1
1.2 文獻回顧....................................1
1.3 研究動機與目的..............................7
1.4 研究內容與論文架構...........................8
第二章 理論基礎.................................9
2.1 圓管內的冪律流動方程式........................9
2.2 自然平衡流道的平衡原理.......................12
2.3 小結.......................................14
第三章 設計優化方法.............................16
3.1 魚骨型流道系統的設計優化方法..................16
3.2 不規則流道系統的設計優化方法..................20
3.3 融膠斜率排列設計.............................23
第四章 結果與討論................................27
4.1 平衡前後的物理變化...........................27
4.2 一模十二穴的設計與分析.......................30
4.3 更改融膠溫度、融膠材料下的設計與分析..........31
4.4 具有刻意角度設計與不規則排列的設計與分析......34
4.4.1 具有刻意角度的布局與分析...................34
4.4.2 不規則流道系統的設計與分析.................35
4.5 融膠流動排列斜率與剩餘時間預估...............37
第五章 結論與未來展望...........................43
參考文獻.......................................44
Extended Abstract.............................46

[1] 張維霖,2009,“射出成形流動平衡分析與改善”,吳鳳技術學院,光電暨材料研究所碩士論文
[2] 鐘榮輝,2011,“多模穴相異成品之流動平衡分析探討與實例驗證”,國立高雄應用科技大學,模具工程系碩士論文
[3] 鄭釗瀚,2011,“多模穴模組流道系統之流動平衡分析”,吳鳳技術學院,光電暨材料研究所碩士論文
[4] 劉履新,李明憲,蔡有藤,劉穆成,王日賜,2013,“多模穴模具之幾何平衡流道設計對成品密度之影響”,Journal of China University of Science and Technology,55,頁57~74,4月
[5] 楊偉聖,2013,“流動平衡元件應用於多模穴射出成形之製程分析”,吳鳳技術學院,光電暨材料研究所碩士論文
[6] 李侑頴,2014,“同模異穴流道之流動平衡分析”,聖約翰科技大學,機械與電腦輔助工程系碩士論文
[7] 葉昱冠,2016,“2+2隨身碟上下蓋射出成形之流動平衡改善分析”,國立台北科技大學,製造科技研究所碩士論文
[8] 洪試閔,2018,“應用模糊控制於熱澆道模具改善一模多穴流動平衡之研究”,國立高雄應用科技大學,模具工程系碩士論文
[9] 王中建,2020,“應用家族模具於寵物階梯板之流動平衡分析”,國立台北科技大學,製造科技研究所碩士論文
[10] 吳添程,2021,“使用半解析法進行多模穴射出模具流道設計”,國立虎尾科技大學,機械與電腦輔助工程系碩士論文
[11] 富強鑫,2020,“產能的智慧哲學-智慧化流動平衡系統”,5月7日,檢自:https://ww w.fcs.com.tw/tw/news-Boost-your-productivity-Intelligent-flow-balance-system.html
[12] 富強鑫,2017,“邁向工業4.0不是夢”,FCS TODAY,第五十六期,第二版,4月
[13] E. Bociaga, T. Jaruga, J. Koszkul, 2003, “Plastic flow investigation in multicavity injection mold” (Achievements in Mechanical and Materials Engineering), Proceedings of the 12th International Scientific Conference, pp. 107-110, Częstochowa, Poland, December
[14] Kevin Alam, Musa R. Kamal, 2005, “A robust optimization of injection molding runner balancing”, Computers and Chemical Engineering, 29, pp. 1934–1944, July
[15] C.C. Chien, C.C. Chiang, W. H. Yang, Vito Tsai, David C.Hsu, CoreTech System Co.,Ltd, 2005, “True 3D CAE visualization of filling imbalance in geometry-balanced runners”, Check from:https://www.moldex3d.com/assets/2011/09/True-3D-CAE-Visualization-of-Filling-Imbalance-in-Geometry-Balanced-Runners.pdf
[16] H. P. Park, B. S. Cha, B. O. Rhee, 2006, “An Experimental Study for the Filling Balance of the Family Mold”, Transactions of Materials Processing, 15, 1, pp. 47-56, January
[17] T. C. Huang, P. H. Huang, S. Y. Yang, T.-Y. Ko, 2008, “Improving Flow Balance during Filling a Multi-cavity Mold with Modified Runner Systems”, Polymer Processing, XXIII, pp. 363-369, April
[18] Yi-qi Wang, Jae-gyu Kim, Jung-il Song, 2014, “Optimization of plastic injection molding process parameters for manufacturing a brake booster valve body”, Materials and Design, 56, pp.313-317, April
[19] Krzysztof Wilczy ´ nski, Przemysław Narowski, 2019, “Simulation Studies on the Effect of Material Characteristics and Runners Layout Geometry on the Filling Imbalance in Geometrically Balanced Injection Molds”, Polymers, 11, 4, pp. 639-650, April
[20] Krzysztof Wilczy ´ nski, Przemysław Narowski, 2020, “A Strategy for Problem Solving of Filling Imbalance in Geometrically Balanced Injection Molds”, Polymers, 12, 4, pp. 805-826, April
[21] Cheng Li Hsu, Yu Zeng Lin, Shia Chung Chen, Cheng Han Tsai, Cheng Yi Chang, Wen Hsien Yang, 2021, “ NUMERICAL VISUALIZATION OF MELT FLOW IN COLD RUNNER AND HOT RUNNER”, Check from:https://moldex3deurope.com/pl/numerical -visualization-of-melt-flow-in-cold-runner-and-hot-runner/
[22] His-Hsun Tsai, Shao-Jung Wu, Jai-Wei Liu, Sin-He Chen, Jui-Jung Lin, 2022, “Filling-Balance-Oriented Parameters for Multi-Cavity Molds in Polyvinyl Chloride Injection Molding”, Polymers, 14, 17, pp. 3483-3502, August
[23] 林师沛、赵洪、刘芳,2008,塑料加工流変学,国防工业出版社,北京

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊