跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃聖傑
研究生(外文):HUANG,SHENG-CHIEH
論文名稱:聚脲與聚醯胺6共聚物之合成及物性探討
論文名稱(外文):Synthesis and Physical Properties of Polyurea and Polyamide 6 Copolymers
指導教授:黃晋男
指導教授(外文):HUANG,CHING-NANG
口試委員:邱顯堂賴秋君黃晋男
口試委員(外文):QIU,XIAN-TANGLAI,CHIU-CHUNHUANG,CHING-NANG
口試日期:2024-06-17
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:93
中文關鍵詞:聚醯胺6聚脲碳酸乙烯酯
外文關鍵詞:Polyamide 6PolyureaEthylene carbonate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究於合成聚醯胺6時,分別引入碳酸乙烯酯(Ethylene carbonate, EC)、聚碳酸酯多元醇(Polycarbonate Diols, PCDL)進行共聚合,使聚醯胺6中含有二氧化碳形成綠色高分子材料,且具有環保性。合成產物經由FT-IR、XRD、TGA、DSC、DMA、接觸角、吸水性測試,鑑定其結構與穩定性。
研究發現N-C=O的伸縮振盪吸收峰已表明EC的加入,而C-H基團的伸縮振動已表明PCDL的加入,進而證實聚醯胺6與EC、PCDL有合成成功;EC、PCDL耐熱程度較差,會使裂解點降低及外觀顏色偏黃。
透過XRD證實高EC比例時,促使結構呈現無定型態,而高PCDL比例時結晶無明顯改變。由DSC證實加入EC、PCDL皆降低了結晶度,且隨著添加物的比例增加導致熔點下降,而熱焓會因添加的比例有上升有下降的趨勢;由DMA證實加入EC、PCDL皆降低了Tg點;添加了EC隨著比例的增加導致接觸角角度下降、吸水率上升,PCDL隨著比例的增加有助於增加接觸角角度、降低吸水率。

This study involves the copolymerization of caprolactam with ethylene carbonate (EC) and polycarbonate diols (PCDL) to produce green polymer materials containing carbon dioxide, demonstrating environmental friendliness. The synthesized products were characterized using FT-IR, XRD, TGA, DSC, DMA, contact angle, and water absorption tests to identify their structure and stability. The study found that the stretching oscillation absorption peak of N-C=O has indicated the addition of EC, and the stretching vibration of the C-H group has indicated the addition of PCDL, which further confirmed that polyamide 6 has been successfully synthesized with EC and PCDL; EC and PCDL are more heat-resistant If it is poor, the cracking point will be lowered and the appearance will be yellowish. XRD analysis confirms that a high EC ratio induces an amorphous structure, while a high PCDL ratio has no significant effect on crystallization. DSC analysis demonstrates that the addition of EC and PCDL both decreases crystallinity and lowers the melting point, with varying trends in enthalpy depending on the ratio of additives. DMA analysis confirms that the addition of EC and PCDL both lowers the Tg point. Increasing EC content decreases contact angle and increases water absorption, while increasing PCDL content increases contact angle and reduces water absorption.
目錄
摘要 I
abstract II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 VIII
第一章 緒論 9
1-1前言 9
1-2 聚脲之應用方向 12
1-3 聚氨酯之應用方向及特性 14
1-4 Nylon-urea之應用方向及特性 16
1-5 研究目的 18
第二章 理論機制 20
2-1Nylon 6聚合理論 20
2-1-1開環理論 20
2-1-2縮合反應 22
2-1-3聚合反應 24
2-2聚脲聚合理論 26
第三章 實驗 29
3-1實驗材料 29
3-2實驗儀器 32
3-3實驗架構 34
3-4實驗流程與步驟 35
3-4-1 合成不同EC比例聚醯胺6共聚物 35
3-4-2 合成不同PCDL比例聚醯胺6共聚物 38
3-5實驗測試 41
3-5-1傅立葉紅外線光譜分析(FT-IR) 41
3-5-2 X-ray 繞射分析儀(X-ray Diffraction, XRD) 42
3-5-3熱重分析儀 (Thermogravimetric Analyzer, TGA) 43
3-5-4微差掃描式熱分析(Differential Scanning Calorimetry,DSC) 44
3-5-5動態熱機械分析儀(Dynamic Mechanical Analyzer, DMA) 45
3-5-6接觸角(Contact angle) 46
3-5-7吸水性測試(Water absorption) 47

第四章 結果與討論 48
4-1合成產物外觀 48
4-2合成產物之傅立葉紅外線光譜分析(FTIR) 52
4-3合成產物之X光繞射分析(XRD) 56
4-4合成產物之熱重量分析(TGA) 59
4-5合成產物之微差掃描式熱分析儀(DSC) 65
4-6合成產物之動態機械分析儀(DMA) 71
4-7合成產物之接觸角 74
4-8合成產物之吸水測試 78
第五章 結論 83
參考文獻 86


圖目錄

圖1:NCO聚合化學式 28
圖2:NIPU聚合化學式 28
圖3: 不同比例之EC、PCDL聚醯胺6共聚物之實驗架構 34
圖4: 不同EC比例聚醯胺6共聚物之結構圖 37
圖5: 不同PCDL比例聚醯胺6共聚物之結構圖 40
圖6:不同EC比例聚醯胺6共聚物之FT-IR 54
圖7:不同PCDL比例聚醯胺6共聚物之FT-IR 55
圖8:不同EC比例聚醯胺6共聚物之XRD 57
圖9不同PCDL比例聚醯胺6共聚物之XRD 58
圖10不同EC比例聚醯胺6共聚物之TGA 61
圖11不同EC比例聚醯胺6共聚物之DTG 61
圖12不同EC比例聚醯胺6共聚物之TGA 63
圖13不同EC比例聚醯胺6共聚物之DTG 63
圖14不同EC比例聚醯胺6共聚物之DSC 67
圖15不同PCDL比例聚醯胺6共聚物之DSC 69
圖16不同EC比例聚醯胺6共聚物之DMA 72
圖17不同PCDL比例聚醯胺6共聚物之DMA 73
表目錄

表1:合成產物分組、產物編號、組成含量及產物外觀 50
表2:合成產物分組、產物編號、組成含量及產物外觀 51
表3不同EC比例聚醯胺6共聚物之Td5、Td50 62
表4不同PCDL比例聚醯胺6共聚物之Td5、Td50 64
表5不同EC比例聚醯胺6共聚物之Tm與結晶度表 68
表6不同PCDL比例聚醯胺6共聚物之Tm與結晶度表 70
表7不同EC比例聚醯胺6共聚物之接觸角 76
表8不同PCDL比例聚醯胺6共聚物之接觸角 77
表9不同EC比例聚醯胺6共聚物之吸水率 81
表10不同PCDL比例聚醯胺6共聚物之吸水率 82


參考文獻
[1]Z. Zhang, K. Cai, S. Liu, W.H. Guo, B.S. Zhang, M.C. Yang, W.T. Liu, “The effect of HIPS-g-MAH on the mechanical properties of PA66/PPO alloy,” Polym. Bull., 79, pp. 7939-7951, 2021.
[2]P.P. Das, V., “Chaudhary Moving towards the era of bio fibre based polymer composites,” Cleaner Engineering and Techno., 4, pp. 100182, 2021.
[3]B. Liu, G. Hu, J. Zhang, W. Yan, “Non-isothermal crystallization, yellowing resistance and mechanical properties of heat-resistant nylon 10T/66/titania dioxide/glass fibre composites,” RSC Adv., 9 (13), pp. 7057-7064, 2019.
[4]G.D. Biricik, H. Celebi, A.T. Seyhan, F. Ates, “Thermal and mechanical properties of flax char/carbon fiber reinforced polyamide 66 hybrid composites,” Polym. Compos., 43 (1), pp. 503-516, 2022.
[5]Y. Wang, P. Zhu, C. Qian, Y. Zhao, L. Wang, D.J. Wang, X. Dong, “The brill transition in long-chain aliphatic polyamide 1012: the role of hydrogen-bonding organization”, Macromol., 54 (14), pp. 6835-6844, 2021.
[6]Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu, “Green Production Technology of the Monomer of Nylon-6: Caprolactam,” Engineering Volume 3, Issue 3, pp 379-384, 2017.
[7]Zixian Ye, Yanlin Liu, Wanding Chen, Zhen Yu, Yajin Fang, Xiangyu Zhou, Yueran He, Yi Wang, Zhaobin Tang, “Bio-based, closed-loop chemical recyclable aromatic polyamide from 2,5-furandicarboxylic acid: Synthesis, high performances, and degradation mechanism,” European Polymer Journal, Volume 210, 112935, 2024.
[8]Richard W. Baker, J.G. Wijmans, Yu Huang, “Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data,” Journal of Membrane Science, Volume 348, Issues 1–2, pp 346-352, 2010.
[9]Chen Tao, Chong Ji, Jiangang Tu, Yuting Wang, Changxiao Zhao, Xin Wang , “Protection mechanism of liquid-filled welded square steel container with polyurea elastomer subjected to small-arms bullet,” Thin-Walled Structures, Volume 198, 111668, 2024.
[10]Ju-Hyung Ha, Na-Hyun Yi, Jong-Kwon Choi, Jang-Ho Jay, “Kim,Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading,” Composite Structures, Volume 93, Issue 8, pp. 2070-2082, 2011.
[11]M.R. Amini, J.B. Isaacs, S. Nemat-Nasser, “Experimental investigation of response of monolithic and bilayer plates to impulsive loads,” International Journal of Impact Engineering, Volume 37, Issue 1, pp. 82-89, 2010.
[12]M.R. Amini, J. Simon, S. Nemat-Nasser, “Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments, Mechanics of Materials,” Volume 42, Issue 6, pp. 615-627, 2010.
[13]M.R. Amini, A.V. Amirkhizi, S. Nemat-Nasser, “Numerical modeling of response of monolithic and bilayer plates to impulsive loads,” International Journal of Impact Engineering, Volume 37, Issue 1, pp. 90-102, 2010.
[14]M.R. Amini, J. Isaacs, S. Nemat-Nasser, “Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments,” Mechanics of Materials, Volume 42, Issue 6, pp. 628-639, June 2010.
[15]Kathryn Ackland, Christopher Anderson, Tuan Duc Ngo, “Deformation of polyurea-coated steel plates under localised blast loading,” International Journal of Impact Engineering, Volume 51, pp. 13-22, January 2013.
[16]Ahsan Samiee, Alireza V. Amirkhizi, Sia Nemat-Nasser, “Numerical study of the effect of polyurea on the performance of steel plates under blast loads,” Mechanics of Materials, Volume 64, pp. 1-10, September 2013.
[17]Erin Gauch, James LeBlanc, Arun Shukla, “Near field underwater explosion response of polyurea coated composite cylinders,” Composite Structures, Volume 202, 15, pp. 836-852, October 2018.
[18]Yehia A. Bahei-El-Din, George J. Dvorak, Olivia J. Fredricksen, “A blast-tolerant sandwich plate design with a polyurea interlayer,” International Journal of Solids and Structures, Volume 43, Issues 25–26, pp. 7644-7658, December 2006.
[19]Srinivasan Arjun Tekalur, Arun Shukla, Kunigal Shivakumar, “Blast resistance of polyurea based layered composite materials,” Composite Structures, Volume 84, Issue 3, pp. 271-281, July 2008.
[20]M. Grujicic, W.C. Bell, B. Pandurangan, T. He, “Blast-wave impact-mitigation capability of polyurea when used as helmet suspension-pad material,” Materials & Design, Volume 31, Issue 9, pp. 4050-4065, October 2010.
[21]James LeBlanc, Nate Gardner, Arun Shukla, “Effect of polyurea coatings on the response of curved E-Glass/Vinyl ester composite panels to underwater explosive loading,” Composites Part B: Engineering, Volume 44, Issue 1, pp. 565-574 January 2013.
[22]Liang Xue, Willis Mock Jr., Ted Belytschko, “Penetration of DH-36 steel plates with and without polyurea coating,” Mechanics of Materials, Volume 42, Issue 11, pp. 981-1003 November 2010.
[23]Damith Mohotti, Tuan Ngo, Priyan Mendis, Sudharshan N. Raman, “Polyurea coated composite aluminium plates subjected to high velocity projectile impact,” Materials & Design (1980-2015), Volume 52, pp. 1-16 December 2013.
[24]Damith Mohotti, Tuan Ngo, Sudharshan N. Raman, Priyan Mendis, “Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact,” Materials & Design, Volume 82, pp. 1-17, October 2015.
[25]Damith Mohotti, Tuan Ngo, Sudharshan N. Raman, Muneeb Ali, Priyan Mendis, “Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact,” Materials & Design (1980-2015), Volume 56, pp. 696-713 April 2014.
[26]R.M. Gamache, C.B. Giller, G. Montella, D. Fragiadakis, C.M. Roland, “Elastomer-metal laminate armor,” Materials & Design, Volume 111, pp. 362-368, December 2016.

[27]Rita Turnaturi, Chiara Zagni, Vincenzo Patamia, Vincenzina Barbera, Giuseppe Floresta, Antonio Rescifina, “CO2-derived non-isocyanate polyurethanes (NIPUs) and their potential applications,” Green Chemistry, Volume 25, Issue 23, pp. 9574-9602, 2023.
[28]Cai Wang, Zhijun Wu, Liuyan Tang, Jinqing Qu, “Synthesis and properties of cyclic carbonates and non-isocyanate polyurethanes under atmospheric pressure,” Progress in Organic Coatings, Volume 127, pp. 359-365, 2019.
[29]Masoumeh Gholami, Alireza Shakeri, Mohsen Zolghadr, Giti Yamini, “Non-Isocyanate polyurethane from the extracted tannin of sumac leaves: Synthesis, characterization, and optimization of the reaction parameters,” Industrial Crops and Products, Volume 161, 113195, 2021.
[30]Marion Thébault, Antonio Pizzi, Hisham A. Essawy, Ahmed Barhoum, Guy Van Assche, “Isocyanate free condensed tannin-based polyurethanes,” European Polymer Journal, Volume 67, pp. 513-526, 2015.
[31]Xinyi Chen, Jinxing Li, Xuedong Xi, Antonio Pizzi, Xiaojian Zhou, Emmanuel Fredon, Guanben Du, Christine Gerardin, “Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy,” Polymer Degradation and Stability, Volume 175, 109121, 2020.
[32]M. Thébault, A. Pizzi, S. Dumarçay, P. Gerardin, E. Fredon, L. Delmotte,” Polyurethanes from hydrolysable tannins obtained without using isocyanates,” Industrial Crops and Products, Volume 59, pp. 329-336, 2014.
[33]Salise Oktay, Nilgün Kızılcan Prof. Dr., Basak Bengu, “Oxidized cornstarch – Urea wood adhesive for interior particleboard production,” International Journal of Adhesion and Adhesives, Volume 110, 102947, 2021.
電子全文 電子全文(網際網路公開日期:20290715)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top