跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許涵崴
研究生(外文):Xu,Hen-Wei
論文名稱:媒體對台灣民眾COVID-19疫苗廠牌選擇之影響 :語料庫分析
論文名稱(外文):The Influence of Media on Taiwanese Citizens' COVID-19 Vaccine Brand Choices: A Corpus Analysis
指導教授:陶聖屏陶聖屏引用關係
指導教授(外文):Tao,Shemg-Ping
口試委員:方鵬程謝奇任
口試委員(外文):Fang,Perng-CherngHsieh, Chi-Jen
口試日期:2024-05-13
學位類別:碩士
校院名稱:中國文化大學
系所名稱:新聞學系
學門:傳播學門
學類:新聞學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:79
中文關鍵詞:COVID-19疫苗訊息流行病社群媒體網路新聞疫苗接受度
外文關鍵詞:COVID-19 vaccinesinfodemicsocial mediaonline newsvaccine acceptance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
2019年末,COVID-19疫情在全球範圍內開始蔓延,至2020年初已演變為一場嚴重的公共衛生危機。這場危機對個人生活產生了巨大衝擊,改變了人們的日常習慣、工作方式和社交互動。同時,它也對整體社會結構造成深遠影響,成為全球關注的焦點。在此背景下,COVID-19疫苗接種被視為控制疫情的重要策略之一,不僅關乎個人健康,也攸關社會恢復正常運作的可能性。本研究旨在探討台灣網路新聞媒體與社群媒體對民眾COVID-19疫苗品牌選擇的影響,並分析這些媒體平台在疫苗相關報導中的議題框架、立場傾向,以及其在風險溝通與危機傳播方面的特徵。
本研究採用語料庫驅動分析法 ( Corpus-Driven Analysis ) 對網路新聞和社群媒體文本進行系統性分析,並輔以半結構式訪談作為研究方法。本研究主要聚焦於四個方面:( 1 ) COVID-19疫苗相關報導的議題框架;( 2 ) 不同媒體平台對疫苗的立場和輿論取向;( 3 ) 網路新聞在風險傳播方面的準確性;( 4 ) 社群媒體上反映的資訊真實性問題。研究者蒐集了2021年1月至6月期間的相關報導,共分析了網路新聞476篇和社群媒體貼文5,723則。
研究結果顯示,不同年齡群體在獲取COVID-19相關資訊時存在明顯差異。年輕群體較多依賴社群媒體平台,中年群體傾向於結合傳統和新媒體,而老年群體則較多依賴傳統媒體管道。媒體報導和社群討論對民眾疫苗認知有顯著影響,但不同年齡層的反應存在差異。疫苗接種決策受多種因素影響,包括職業責任、個人健康狀況、科學數據可信度、以及媒體報導等。值得注意的是,資訊真實性成為一個廣受關注的議題。研究發現,網路新聞媒體在報導COVID-19疫苗相關議題時,傾向於採用較為中立和權威的立場,但在風險傳播的準確性方面仍有改進空間。社群媒體平台則呈現出更為多元化的觀點,但同時也增加了民眾辨別資訊真實性的難度。這種現象反映了在當前資訊環境下,提升公眾媒體素養和批判性思維的重要性。

At the end of 2019, the COVID-19 pandemic began spreading globally, evolving into a severe public health crisis by early 2020. This crisis has significantly impacted individual lives, altering daily routines, work methods, and social interactions. It has also had a profound effect on the overall social structure, becoming a global focal point. In this context, COVID-19 vaccination has been regarded as a critical strategy for controlling the pandemic, influencing not only individual health but also the potential for society to return to normalcy. This study aims to explore the influence of Taiwan's online news media and social media on the public's choice of COVID-19 vaccine brands. It analyzes the framing of issues, stance tendencies, and characteristics of risk communication and crisis dissemination in vaccine-related reports on these media platforms.

This research adopts a Corpus-Driven Analysis approach for a systematic examination of online news and social media texts, complemented by semi-structured interviews as a research method. The study focuses on four main aspects:( 1 ) the framing of issues in COVID-19 vaccine-related reports; ( 2 ) the stance and public opinion orientation of different media platforms regarding vaccines; ( 3 ) the accuracy of risk communication in online news; and ( 4 ) the authenticity of information reflected on social media. The researcher collected relevant reports from January to June 2021, analyzing a total of 476 online news articles and 5,723 social media posts.

The results show distinct differences among age groups in accessing COVID-19-related information. The younger generation tends to rely more on social media platforms, the middle-aged group combines traditional and new media, while the older generation relies more on traditional media channels. Media reports and social discussions significantly influence public perceptions of vaccines, with different age groups reacting differently. Vaccination decisions are influenced by various factors, including occupational responsibilities, personal health conditions, the credibility of scientific data, and media reports. Notably, the authenticity of information has become a widely concerned issue. The study finds that online news media tend to adopt a more neutral and authoritative stance in reporting COVID-19 vaccine-related issues, though there is still room for improvement in the accuracy of risk communication. Social media platforms present a more diverse range of views, but they also increase the difficulty for the public to discern the authenticity of information. This phenomenon underscores the importance of enhancing public media literacy and critical thinking in the current information environment.

第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與方法 7
第二章 文獻探討 9
第一節 COVID-19疫情下的風險認知與決策行為 9
第二節 媒體傳播於疫苗態度形塑之角色 13
第三節 研究問題 18
第三章 研究方法 20
第一節 研究方法概述 20
第二節 內容分析與語料庫分析法的比較 21
第三節 語料庫語言學分析 23
第四節 半結構深度訪談法 27
第四章 研究分析與發現 30
第一節 庫柏中文語料庫研究分析 30
第二節 COVID-19疫苗接種態度研究訪談 48
第三節 研究問題回應與論述 55
第五章 結論 59
第一節 研究發現 59
第二節 研究展望 61
參考文獻 63


ETtoday健康雲 (2021年6月29日)。不要再相信謠言了#HJY [Status update]。Facebook。https://www.facebook.com/ETtodayHEALTH/posts/pfbid02imjx3LBvzVAXne7qRVfbAdyy9rriVpYpP1EpMHPSjSJ3kpJXktR7ChgZbsuFpJMal
Mygopen (2021年3月15日)。Home謠言影片 【誤導】50歲以下的健康人不需接種疫苗影片貼文?感染過的人不用打疫苗?專家釋疑 [Status update]。Facebook。https://www.facebook.com/mygopen/posts/pfbid02XGFQLdFQo3QEfFg3uoA2gVjVHk2A2HwdZHkWcLNHpV7p4mxJsMeyoQAHgA4ipMAql
中央疫情指揮中心 (2021年5月16日)。公費疫苗接種對象。https://web.archive.org/web/20210516120108/https://www.cdc.gov.tw/Category/Page/9mcqWyq51P_aYADuh3rTBA
中央疫情指揮中心新聞稿 (2022年1月4日)。1月5日起至1月31日止,地方政府可提供民眾200元(含)以下衛教品,以提升接種意願。https://web.archive.org/web/20220409072858/https://www.cdc.gov.tw/Bulletin/Detail/Q-xhjZ6c709hJ-9GQXtFFw?typeid=9
世界衛生組織 (無日期)。Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. https://www.who.int/csr/sars/country/table2004_04_21/en/
李岦泓 (2021年3月15日)。最近網路上流傳許多關於疫苗的錯誤 [Status update]。Facebook。
李春生 (2021年5月21日)。【國安級疫苗之戰】時間:2021/5/31(一)貼文:NO 1254篇 [Status update]。Facebook。https://www.facebook.com/4283294231733850
李家寧 (2020)。COVID-19加速學術著作預印本的重新定位。科技政策觀點。https://doi.org/10.6916/STPIRP.2020-09-29.0.003
俞蘋 (2019)。有心或無意?:社群媒體上的新聞與政治資訊使用。中華傳播學刊,36,39-79。
施琮仁 (2021)。新冠肺炎的日常防疫行為:媒體、情緒與風險認知的作用。新聞學研究,148,153-196。https://doi.org/10.30386/MCR.202107.0017
康永欽 (2013)。記實避禍的新聞處理策略之研究 [未出版碩士論文]。國立政治大學新聞學系。
郭文平 (2014)。語料庫分析方法在媒介文本分析的應用--以英語經濟新聞為例。洪雅慧(主持人),媒介文本與日常生活,中華傳播學會2014年會,銘傳大學。

郭柏傑 (2018)。台灣新聞媒體中的基改食品 [未出版碩士論文]。國立臺灣大學。https://hdl.handle.net/11296/a6fk8a
陳潔 (2023年1月17日)。疫情3年了,你好嗎?──7大關鍵數據,解析全台逾900萬人感染、1萬5千人死亡下該被看見的事。報導者。https://www.twreporter.org/a/covid-19-third-anniversary-coverage-data
華人川粉現象(一):所謂挺川的「華人自由派」,根本就不是「自由派」 (2021年1月22日)。The News Lens關鍵評論網。https://www.thenewslens.com/article/146213
潘璿安 (2022)。預印本之特性、出版倫理與其在COVID-19肺炎疫情下的知識傳播影響力。教育資料與圖書館學,59(1),35-71。https://doi.org/10.6120/JoEMLS.202203_59(1).0040.OR.BM
盧鴻毅、林冠承、趙麟宇 (2023)。風險感知與疫苗猶豫:以台灣新冠肺炎疫情為例。傳播與社會學刊,63,203-238。https://doi.org/10.30180/CS.202301_(63).0008
盧鴻毅、許富盛、侯心雅 (2012)。樂觀偏誤、自我效能、社會信任與新流感疫苗接種意願。傳播與社會學刊,22,135-158。
衛生福利部疾病管制署新聞稿 (2022年6月20日)。5歲以上長者及55歲以上原住民,尚未完成接種疫苗民眾,於6月30日前接種,可免費獲得兩劑單劑型快篩試劑。https://web.archive.org/web/20220620174621/https://www.cdc.gov.tw/Bulletin/Detail/-JtZLI5Clmts990Enz8mMA?typeid=9
衛生福利部疾病管制署新聞稿 (2022年6月20日)。112年全民COVID-19疫苗接種運動「疫苗加一,解封安心」於3/6開跑 呼籲民眾踴躍接種。https://www.cdc.gov.tw/Bulletin/Detail/exem9hQe0r3J_BpDIE1DlQ?typeid=9
鄭宇君 (2023)。全球傳染病風險下的社交媒體訊息分享:Twitter 社群的 COVID-19 貼文內容與超連結分析。新聞學研究,154,113-173。
鍾高瑩、曾婉儀 (2020)。我國2017至2019年「全民國防教育暑期戰鬥營」之網路輿情情勢-「以OpView社群口碑資料庫」為觀察視角。
闕河嘉、陳光華 (2016)。庫博中文獨立語料庫分析工具之開發與應用:有機農業媒體呈現案例研究 [CORPRO: A Chinese Language Corpus Tool and a Case Study of Media Representation of Organic Agriculture]。https://doi.org/10.13140/RG.2.2.36253.97768
闕河嘉、陳光華 (2019)。庫博中文獨立語料庫分析工具之開發與應用。預印本。https://doi.org/10.13140/RG.2.2.36253.97768

Akhmetzhanov, A. R., Cheng, H., Linton, N. M., Ponce, L., Jian, S., & Lin, H. (2022). Transmission dynamics and effectiveness of control measures during COVID-19 surge, Taiwan, April–August 2021. Emerging Infectious Diseases, 28(10), 2051-2059. https://doi.org/10.3201/eid2810.220456
Al-Amer, R., Maneze, D., Everett, B., Montayre, J., Villarosa, A. R., Dwekat, E., Samara, M., & Salamonson, Y. (2022). COVID-19 vaccination intention in the first year of the pandemic: A systematic review. Journal of Clinical Nursing, 31(1-2), 62-86. https://doi.org/10.1111/jocn.15951
Avery, E. J., Lariscy, R. W., Kim, S., & Hocke, T. (2010). A quantitative review of crisis communication research in public relations from 1991 to 2009. Public Relations Review, 36(2), 190-192. https://doi.org/10.1016/j.pubrev.2010.01.001
Baker, P. (2004). Querying keywords: Questions of difference, frequency, and sense in keywords analysis. Journal of English Linguistics, 32(4), 346-359. https://doi.org/10.1177/0075424204269894
Baker, P. (2018). Language, sexuality and corpus linguistics: Concerns and future directions. Journal of Language and Sexuality, 7(2), 263-279. https://doi.org/10.1075/jls.17019.bak
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130-1132. https://doi.org/10.1126/science.aaa1160
Basu, A., Roy, A., Hazra, A. K., & Pramanick, K. (2020). Reputation loss analysis of youths' perspective in India on and during the pandemic of COVID-19. Corporate Reputation, 11-24. https://doi.org/10.1002/9781119203506.ch2
Beattie, G., Marselle, M., McGuire, L., & Litchfield, D. (2017). Staying over-optimistic about the future: Uncovering attentional biases to climate change messages. Semiotica, 2017(218), 21-64. https://doi.org/10.1515/sem-2016-0074
Bednarek, M., Caple, H., & Huan, C. (2021). Computer-based analysis of news values: A case study on national day reporting. Journalism Studies, 22(6), 702-722. https://doi.org/10.1080/1461670X.2021.1889392
Bourne, P. E., Polka, J. K., Vale, R. D., & Kiley, R. (2017). Ten simple rules to consider regarding preprint submission [Editorial]. PLOS Computational Biology, 13(5), e1005473. https://doi.org/10.1371/journal.pcbi.1005473
Bradshaw, S., Howard, P., Kollanyi, B., & Neudert, L.-M. (2019). Sourcing and automation of political news and information over social media in the United States, 2016-2018. Political Communication, 37(2), 173-193. https://doi.org/10.1080/10584609.2019.1663322
Bränström, R., Kristansson, S., & Ullén, H. (2005). Risk perception, optimistic bias, and readiness to change sun related behavior. European Journal of Public Health, 16(5), 492-497. https://doi.org/10.1093/eurpub/cki193
Brezina, V., McEnery, T., & Wattam, S. (2015). Collocations in context: A new perspective on collocation networks. International Journal of Corpus Linguistics, 20(2), 139-173. https://doi.org/10.1075/ijcl.20.2.01bre
Brierley, L. (2021). Lessons from the influx of preprints during the early COVID-19 pandemic. The Lancet Planetary Health, 5(3), e115-e117. https://doi.org/10.1016/S2542-5196(21)00011-5
Bruns, A. (2018). Gatewatching and news curation: Journalism, social media, and the public sphere. Peter Lang.
Bunker, D. (2020). Who do you trust? The digital destruction of shared situational awareness and the COVID-19 infodemic. International Journal of Information Management, 55, 102201. https://doi.org/10.1016/j.ijinfomgt.2020.102201
Cascini, F., Pantovic, A., Al-Ajlouni, Y., Failla, G., Puleo, V., Melnyk, A., Lontano, A., Cozzolino, F., Ricciardi, W., & Boccia, S. (2021). Social media and attitudes towards a COVID-19 vaccination: A systematic review of the literature. EClinicalMedicine, 40, 101113. https://doi.org/10.1016/j.eclinm.2021.101113
Ceron, W., Sanseverino, G. G., de-Lima-Santos, M. F., & Quiles, M. G. (2021). COVID-19 fake news diffusion across Latin America. Social Network Analysis and Mining, 11(1), 47. https://doi.org/10.1007/s13278-021-00753-z
Chiarelli, A., Johnson, R., Richens, E., & Pinfield, S. (2019). Accelerating scholarly communication: The transformative role of preprints [Report]. https://doi.org/10.5281/zenodo.3357727
Chon, M.-G., & Kim, S. (2022). Dealing with the COVID-19 crisis: Theoretical application and application of situational crisis communication theory. Corporate Reputation Review, 25, 390-406. https://doi.org/10.1057/s41299-021-00129-1
Chou, W.-Y. S., & Budenz, A. (2020). Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Health Communication, 35(14), 1718-1722. https://doi.org/10.1080/10410236.2020.1838096
Conway, M. (2001). Cybernewsers, deserters and includers: An analysis of Internet news users and the effect on traditional news media use. Proceedings of the 84th Annual Meeting of the Association for Education in Journalism and Mass Communication, Washington, DC, 5-8 August. http://eric.ed.gov/ERICDocs/data/ericdocs2/content_storage_01/
Coombs, W. T. (2007). Protecting organization reputations during a crisis: The development and application of situational crisis communication theory. Corporate Reputation Review, 10(3), 163-176. https://doi.org/10.1057/palgrave.crr.1550049
Coombs, W. T. (2014). Ongoing crisis communication: Planning, managing, and responding (4th ed.). Sage Publications.
Crook, B., Stephens, K. K., Pastorek, A. E., Mackert, M., & Donovan, E. E. (2016). Sharing health information and influencing behavioral intentions: The role of health literacy, information overload, and the Internet in the diffusion of healthy heart information. Health Communication, 31(1), 60-71. https://doi.org/10.1080/10410236.2014.940669
Dhanani, L. Y., & Franz, B. (2020). The role of news consumption and trust in public health leadership in shaping COVID-19 knowledge and prejudice. Frontiers in Psychology, 11, 2812. https://doi.org/10.3389/fpsyg.2020.560828
Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955. In J. R. Firth et al. (Eds.), Studies in linguistic analysis (pp. 1-32). Basil Blackwell.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley.
Fraser, N., Brierley, L., Dey, G., Polka, J. K., Pálfy, M., Nanni, F., & Coates, J. A. (2021). The evolving role of preprints in the dissemination of COVID-19 research and their impact on the science communication landscape [Version 2]. PLOS Biology, 19(4), e3000959. https://doi.org/10.1371/journal.pbio.3000959
Gavi, the Vaccine Alliance. (n.d.). COVAX explained. Retrieved from https://www.gavi.org/vaccineswork/covax-explained
Gopalakrishna, G. (2021). Preprint advocates must also fight for research integrity. Nature. https://doi.org/10.1038/d41586-021-02481-y
Hall, S. (1980). Encoding/decoding. In S. Hall, D. Hobson, A. Lowe, & P. Willis (Eds.), Culture, media, language (pp. 128-138). Hutchinson.
Halliday, M. (1993). Towards a language-based theory of learning. Linguistics and Education, 5(2), 93-116. https://doi.org/10.1016/0898-5898(93)90026-7
Hara, M., Ishibashi, M., Nakane, A., Nakano, T., & Hirota, Y. (2021). Differences in COVID-19 vaccine acceptance, hesitancy, and confidence between healthcare workers and the general population in Japan. Vaccines, 9(12), 1389. https://doi.org/10.3390/vaccines9121389
Hartley, K., & Vu, M. K. (2020). Fighting fake news in the COVID-19 era: Policy insights from an equilibrium model. Policy Sciences, 53(4), 735-758. https://doi.org/10.1007/s11077-020-09405-z
Hashmi, F. K., Atif, N., Malik, U. R., Riboua, Z., Saleem, F., Khan, Y. H., ... & Mallhi, T. H. (2020). Misinformation in wake of the COVID-19 outbreak: Fueling shortage and misuse of lifesaving drugs in Pakistan. Disaster Medicine and Public Health Preparedness, 1-2. https://doi.org/10.1017/dmp.2020.400
Holton, A. E., Baek, K., Coddington, M., & Yaschur, C. (2014). Seeking and sharing: Motivations for linking on Twitter. Communication Research Reports, 31(1), 33-40. https://doi.org/10.1080/08824096.2013.843165
Horbach, S. P. J. M. (2020a). Pandemic publishing: Medical journals drastically speed up their publication process for Covid-19. bioRxiv. https://doi.org/10.1101/2020.04.18.045963
Horbach, S. P. J. M. (2020b). Pandemic publishing: Medical journals strongly speed up their publication process for COVID-19. Quantitative Science Studies, 1(3), 1056-1067. https://doi.org/10.1162/qss_a_00076
Hou, Z., Du, F., Zhou, X., Jiang, H., Martin, S., Larson, H., & Lin, L. (2020). Cross-country comparison of public awareness, rumors, and behavioral responses to the COVID-19 epidemic: Infodemiology study. Journal of Medical Internet Research, 22(8), e21143. https://doi.org/10.2196/21143
Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141-154. https://doi.org/10.1038/s41579-020-00459-7
Islam, M. S., Sarkar, T., Khan, S. H., Mostofa Kamal, A.-H., Hasan, S. M. M., Kabir, A., ... & Seale, H. (2020). COVID-19–related infodemic and its impact on public health: A global social media analysis. American Journal of Tropical Medicine and Hygiene, 103(4), 1621-1629. https://doi.org/10.4269/ajtmh.20-0812
Jenkins, H. (2006). Convergence culture: Where old and new media collide. New York University Press.
Jolley, D., & Paterson, J. L. (2020). Pylons ablaze: Examining the role of 5G COVID-19 conspiracy beliefs and support for violence. British Journal of Social Psychology, 59(3), 628-640. https://doi.org/10.1111/bjso.12394
Kalogeropoulos, A., Fletcher, R., & Nielsen, R. K. (2019). News brand attribution in distributed environments: Do people know where they get their news? New Media & Society, 21(3), 583-601. https://doi.org/10.1177/1461444818801313
Kim, H. K., & Niederdeppe, J. (2013). The role of emotional response during an H1N1 influenza pandemic on a college campus. Journal of Public Relations Research, 25(1), 30-50. https://doi.org/10.1080/1062726X.2013.739100
Kümpel, A. S., Karnowski, V., & Keyling, T. (2015). News sharing in social media: A review of current research on news sharing users, content, and networks. Social Media + Society, 1(2), 1-14. https://doi.org/10.1177/2056305115610141
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096. https://doi.org/10.1126/science.aao2998
Li, M., Wang, H., Tian, L., Pang, Z., Yang, Q., Huang, T., ... & Fan, H. (2022). COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduction and Targeted Therapy, 7(1), 146. https://doi.org/10.1038/s41392-022-00996-y
Lima, D. L., Lopes, M. A. A. A. M., & Brito, A. M. (2020). Social media: Friend or foe in the COVID-19 pandemic? Clinics, 75, e1953. https://doi.org/10.6061/clinics/2020/e1953
Liu, H., & Priest, S. (2009). Understanding public support for stem cell research: Media communication, interpersonal communication and trust in key actors. Public Understanding of Science, 18(6), 704-718. https://doi.org/10.1177/0963662508097625
Liu, S., & Yu, H. (2023). What is newsworthy about Covid-19? A corpus linguistic analysis of news values in reports by China Daily and The New York Times. Humanities and Social Sciences Communications, 10(1), 739. https://doi.org/10.1057/s41599-023-02241-5
Manganello, J., Gerstner, G., Pergolino, K., Graham, Y., Falisi, A., & Strogatz, D. (2017). The relationship of health literacy with use of digital technology for health information: Implications for public health practice. Journal of Public Health Management and Practice, 23(4), 380-387. https://doi.org/10.1097/PHH.0000000000000366
Massey, D. S., Opare, M. A., Wallach, J. D., Ross, J. S., & Krumholz, H. M. (2020). Assessment of preprint policies of top-ranked clinical journals. JAMA Network Open, 3(7), e2011127. https://doi.org/10.1001/jamanetworkopen.2020.11127
Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., ... & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), 947-953. https://doi.org/10.1038/s41562-021-01122-8
McEachan, R. R. C., Conner, M., Taylor, N., & Lawton, R. J. (2011). Prospective prediction of health-related behaviors with the theory of planned behavior: A meta-analysis. Health Psychology Review, 5(2), 97-144. https://doi.org/10.1080/17437199.2010.521684
Mian, A., & Khan, S. (2020). Coronavirus: The spread of misinformation. BMC Medicine, 18(1), 89. https://doi.org/10.1186/s12916-020-01556-3
Naeem, S. B., & Bhatti, R. (2020). The Covid‐19 'infodemic': A new front for information professionals. Health Information & Libraries Journal, 37(3), 233-239. https://doi.org/10.1111/hir.12311
Naeem, S. B., Bhatti, R., & Khan, A. (2020). An exploration of how fake news is taking over social media and putting public health at risk. Health Information & Libraries Journal, 38(2), 143-149. https://doi.org/10.1111/hir.12320
Nguyen, A. (2010). Harnessing the potential of online news: Suggestions from a study on the relationship between online news advantages and its post-adoption consequences. Journalism, 11(2), 223-241. https://doi.org/10.1177/1464884909355910
Niederdeppe, J., Fowler, E. F., Goldstein, K., & Pribble, J. (2010). Does local television news coverage cultivate fatalistic beliefs about cancer prevention? Journal of Communication, 60(2), 230-253. https://doi.org/10.1111/j.1460-2466.2009.01474.x
Oh, S.-H., Lee, S. Y., & Han, C. (2020). The effects of social media use on preventive behaviors during infectious disease outbreaks: The mediating role of self-relevant emotions and public risk perception. Health Communication, 36(8), 972-981. https://doi.org/10.1080/10410236.2020.1724639
Paek, H.-J., & Hove, T. (2020). Communicating uncertainties during the COVID-19 outbreak. Health Communication, 35(14), 1729-1731. https://doi.org/10.1080/10410236.2020.1838092
Pan, W., Liu, D., & Fang, J. (2021). An examination of factors contributing to the acceptance of online health misinformation. Frontiers in Psychology, 12, 630268. https://doi.org/10.3389/fpsyg.2021.630268
Park, C. S., & Kaye, B. K. (2020). What's this? Incidental exposure to news on social media, news-finds-me perception, news efficacy, and news consumption. Mass Communication and Society, 23(2), 157-180. https://doi.org/10.1080/15205436.2019.1702216
Patel, S. D., & Nath, P. (2020). Infodemic within a pandemic-the case of COVID-19 and urban India. International Journal of Medicine and Public Health, 10(3), 114-118. https://doi.org/10.5530/ijmedph.2020.3.24
Phillips, M. K. (1983). Lexical macrostructure in science text [Unpublished doctoral dissertation]. University of Birmingham.
Pian, W., Chi, J., & Ma, F. (2021). The causes, impacts and countermeasures of COVID-19 "infodemic": A systematic review using narrative synthesis. Information Processing & Management, 58(6), 102713. https://doi.org/10.1016/j.ipm.2021.102713
Potts, A., Bednarek, M., & Caple, H. (2015). How can computer-based methods help researchers to investigate news values in large datasets? A corpus linguistic study of the construction of newsworthiness in the reporting on Hurricane Katrina. Discourse & Communication, 9(2), 149-172. https://doi.org/10.1177/1750481314568548
Ravinetto, R., Caillet, C., Zaman, M. H., Singh, J. A., Guerin, P. J., Ahmad, A., ... & Newton, P. N. (2021). Preprints in times of COVID19: The time is ripe for agreeing on terminology and good practices. BMC Medical Ethics, 22(1), 106. https://doi.org/10.1186/s12910-021-00667-7
Ritchie, H., Mathieu, E., Rodés-Guirao, L., Appel, C., Giattino, C., Ortiz-Ospina, E., ... & Roser, M. (2020). Coronavirus pandemic (COVID-19). Our World in Data. https://ourworldindata.org/coronavirus
Roozenbeek, J., Schneider, C. R., Dryhurst, S., Kerr, J., Freeman, A. L. J., Recchia, G., ... & van der Linden, S. (2020). Susceptibility to misinformation about COVID-19 around the world. Royal Society Open Science, 7(10), 201199. https://doi.org/10.1098/rsos.201199
Roser, M., Ritchie, H., Ortiz-Ospina, E., & Hasell, J. (2020). Coronavirus pandemic (COVID-19). Our World in Data. https://ourworldindata.org/coronavirus
Rothkopf, D. (2003, May 11). When the buzz bites back. The Washington Post. https://www.washingtonpost.com/archive/opinions/2003/05/11/when-the-buzz-bites-back/bc8cd84f-cab6-4648-bf58-0277261af6cd/
Rozanski, A., Bavishi, C., Kubzansky, L. D., & Cohen, R. (2019). Association of optimism with cardiovascular events and all-cause mortality: A systematic review and meta-analysis. JAMA Network Open, 2(9), e1912200. https://doi.org/10.1001/jamanetworkopen.2019.12200
Salwen, M., Garrison, B., & Driscoll, P. (2005). The baseline survey projects: Exploring questions. In M. Salwen, B. Garrison, & P. Driscoll (Eds.), Online news and the public (pp. 121-145). Lawrence Erlbaum.
Sanderson, A. E., Jamison, A. M., Huhn, N., Pasquino, S.-L., & Sell, T. K. (2023). Combating the infodemic: A 4i framework for promoting communication and trust. BMC Public Health, 23(1), 1662. https://doi.org/10.1186/s12889-023-16612-9
Sandu, A. (2020). From pandemic to infodemic. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 11(2), 277-289. https://doi.org/10.18662/brain/11.2/87
Scerri, M., & Grech, V. (2020). COVID-19, its novel vaccination and fake news – what a brew. Early Human Development, 152, 105256. https://doi.org/10.1016/j.earlhumdev.2020.105256
Shimizu, K. (2020). 2019-nCoV, fake news, and racism. The Lancet, 395(10225), 685-686. https://doi.org/10.1016/S0140-6736(20)30357-3
Shmueli, L. (2021). Predicting intention to receive COVID-19 vaccine among the general population using the health belief model and the theory of planned behavior model. BMC Public Health, 21(1), 804. https://doi.org/10.1186/s12889-021-10816-7
Stone, G. C., & McCombs, M. E. (1981). Tracing the time lag in agenda-setting. Journalism Quarterly, 58(1), 51-55. https://doi.org/10.1177/107769908105800108
Sun, L., Shen, L., Fan, J., Gu, F., Hu, M., An, Y., ... & Xiao, J. (2020). Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. Journal of Medical Virology, 92(10), 2055-2066. https://doi.org/10.1002/jmv.25966
Tagliabue, F., Galassi, L., & Mariani, P. (2020). The "pandemic" of disinformation in COVID-19. SN Comprehensive Clinical Medicine, 2(9), 1287-1289. https://doi.org/10.1007/s42399-020-00439-1
Tapia, L. (2020). COVID-19 and fake news in the Dominican Republic. The American Journal of Tropical Medicine and Hygiene, 102(6), 1172-1174. https://doi.org/10.4269/ajtmh.20-0234
Taylor, L. (2020). Covid-19 misinformation sparks threats and violence against doctors in Latin America. BMJ, 370, m3088. https://doi.org/10.1136/bmj.m3088
Tewksbury, D., Weaver, A. J., & Maddex, B. D. (2001). Accidentally informed: Incidental news exposure on the World Wide Web. Journalism & Mass Communication Quarterly, 78(3), 533-554. https://doi.org/10.1177/107769900107800309
Wang, C.-W., de Jong, E. P., Faure, J. A., Ellington, J. L., Chen, C.-H. S., & Chan, C.-C. (2022). A matter of trust: A qualitative comparison of the determinants of COVID-19 vaccine hesitancy in Taiwan, the United States, the Netherlands, and Haiti. Human Vaccines & Immunotherapeutics, 18(5), 2050121. https://doi.org/10.1080/21645515.2022.2050121
Watson, C. (2022). Rise of the preprint: How rapid data sharing during COVID-19 has changed science forever. Nature Medicine, 28(1), 2-5. https://doi.org/10.1038/s41591-021-01654-6
Williams Kirkpatrick, A. (2020). The spread of fake science: Lexical concreteness, proximity, misinformation sharing, and the moderating role of subjective knowledge. Public Understanding of Science, 30(1), 55-74. https://doi.org/10.1177/0963662520966165
World Health Organization. (2020, September 23). Managing the COVID-19 infodemic: Promoting healthy behaviours and mitigating the harm from misinformation and disinformation. https://www.who.int/news/item/23-09-2020-managing-the-covid-19-infodemic-promoting-healthy-behaviours-and-mitigating-the-harm-from-misinformation-and-disinformation
Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676. https://doi.org/10.1016/S0140-6736(20)30461-X
Zhang, W., & Cheung, Y. L. (2022). The hierarchy of news values–a corpus-based diachronic and cross-cultural comparison of news reporting on epidemics. Journalism Studies, 23(3), 281-301. https://doi.org/10.1080/1461670X.2021.1916982
Zhang, K. C., Fang, Y., Cao, H., Chen, H., Hu, T., Chen, Y., Zhou, X., & Wang, Z. (2021). Behavioral intention to receive a COVID-19 vaccination among Chinese factory workers: Cross-sectional online survey. Journal of Medical Internet Research, 23(3), e24673. https://doi.org/10.2196/24673
Zhou, M., Zhao, L., Kong, N., Campy, K. S., Wang, S., & Qu, S. (2018). Predicting behavioral intentions to children vaccination among Chinese parents: An extended TPB model. Human Vaccines & Immunotherapeutics, 14(11), 2748-2758. https://doi.org/10.1080/21645515.2018.1502524

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊