跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高家銘
研究生(外文):Jia-Ming Gao
論文名稱:開發可降解乙型類澱粉蛋白團塊之奈米治療策略
論文名稱(外文):Developing nanotechnology-based therapeutic strategy for degradation of amyloid beta plaques
指導教授:鄭豐裕鄭豐裕引用關係
指導教授(外文):Fong-Yu Cheng
口試委員:鄭豐裕蘇平貴呂晃志
口試委員(外文):Fong-Yu ChengPi-Guey SuHoang-Jyh Leu
口試日期:2024-06-27
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:60
中文關鍵詞:金奈米棒
外文關鍵詞:AuNRs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症(Alzheimer's Disease)是一種嚴重的神經退化性疾病,是老年痴呆症的一種形式,這種疾病的特徵會使記憶力、思考能力和行為逐漸惡化,這些疾病帶來高昂的醫療和長期護理費用。目前沒有阻止或逆轉阿茲海默症的治療方法,只有少部分的醫療技術可以使症狀減緩。本研究製備了表面帶有Thioflavin T(ThT)分子的金奈米棒,針對阿茲海默症的其中一個成因Aβ42蛋白團塊具有結合特性。在合成Aβ42團塊的部分根據螢光光譜儀(Fluorescence Spectrometer)與掃描電子顯微鏡(Scanning Electron Microscope, SEM)的輔助下,確認了成功合成Aβ42蛋白團塊。接著以修飾ThT的金奈米棒與Aβ42蛋白團塊結合,並照射近紅外光藉由金奈米棒的光熱治療來分解Aβ42蛋白團塊。此奈米技術治療略為為阿茲海默症的治療提供一種可行性,並且希望透過此治療方式減輕這疾病帶來的醫療與長期護理的負擔。
Alzheimer's Disease is a severe neurodegenerative disorder and a form of dementia. This disease is characterized by a gradual deterioration in memory, cognitive abilities, and behavior, leading to high medical and long-term care costs. Currently, there is no treatment that can stop or reverse Alzheimer's Disease; only a few medical techniques can alleviate the symptoms. This study prepared gold nanorods with surface-bound Thioflavin T (ThT) molecules, which have a binding affinity for Aβ (Beta-amyloid) 42 plaques protein aggregates, one of the causes of Alzheimer's Disease. Using a fluorescence spectrometer and scanning electron microscope (SEM), the successful synthesis of Aβ42 plaques was confirmed. The ThT-modified gold nanorods were then combined with the Aβ42 plaques, and near-infrared light was used to decompose the Aβ42 plaques through the photothermal therapy of the gold nanorods. This nanotechnology treatment strategy provides a feasible option for the treatment of Alzheimer's Disease, with the hope of reducing the medical and long-term care burdens caused by this disease.
目錄
謝致 ............................................................................................................. I
摘要 ........................................................................................................... II
Abstract ................................................................................................... III
目錄 .......................................................................................................... IV
圖目錄 ................................................................................................... VIII
表目錄 ........................................................................................................ X
第一章 介紹............................................................................................... 1
1.1 金奈米棒介紹 ............................................................................... 1
1.1.1 金奈米棒的主要特性 ......................................................... 1
1.1.2 金奈米棒的合成 ................................................................. 3
1.1.3 金奈米棒應用領域 ............................................................. 4
1.2 阿茲海默症(Alzheimer's Disease)介紹 ................................ 6
1.2.1 阿茲海默症的病因 ............................................................. 7
1.2.2 阿茲海默症的病理 ........................................................... 10
1.2.3 阿茲海默症的診斷 ........................................................... 13
1.2.4 阿茲海默症的治療 ........................................................... 18
1.3 先前文獻有關金奈米棒的光熱治療與Aβ42蛋白團塊 ......... 20
1.3.1 光熱治療 ........................................................................... 20
1.3.2 奈米粒子的發熱治療 ....................................................... 20
1.3.3 Thioflavin T (ThT)與Aβ42蛋白團塊反應 .................... 22
1.3.4 針對Aβ42蛋白團塊修飾金奈米棒 ............................... 24
第二章 材料跟方法 ................................................................................ 25
2.1 實驗藥品與材料......................................................................... 25
2.1.1金奈米棒合成與修飾之材料及藥品 ............................... 25
2.1.2 Aβ42蛋白團塊合成及檢測所需之藥品 .......................... 27
2.1.3 實驗及檢測儀器設備 ....................................................... 28
2.2 實驗架構 ..................................................................................... 29
2.3 金奈米棒的合成與修飾 ............................................................ 31
2.3.1 金奈米棒的合成與檢測 ................................................... 31
2.3.2 金奈米棒表面修飾Cystamine與檢測 .......................... 32
2.3.3 金奈米棒表面修飾Thioflavin T .................................... 34
2.4 Aβ42蛋白團塊合成及檢測 ........................................................ 35
2.4.1 Aβ42蛋白單體前處理 ...................................................... 35
2.4.1 Aβ42團塊合成與測定 ...................................................... 36
2.5 以金奈米棒特性破壞Aβ42團塊實驗 ..................................... 37
2.5.1 金奈米棒的升溫測試 ....................................................... 37
2.5.2 實驗前樣品處理與SEM取樣 ........................................ 38
2.5.3 照射紅外光與後續處裡取樣 .......................................... 38
第三章 結果與討論 ................................................................................ 39
3.1 金奈米棒特性分析 .................................................................... 39
3.1.1 金奈米棒特徵峰確認 ....................................................... 39
3.1.2 金奈米棒修飾Cysteamine後特徵峰確認 .................... 40
3.1.3 金奈米棒修飾ThT .......................................................... 42
3.1.4 金奈米棒光熱效應檢測 ................................................... 43
3.2 Aβ42蛋白團塊合成與檢測 ........................................................ 45
3.2.1 Aβ42蛋白團塊確認 .......................................................... 45
3.2.2 近紅外光對Aβ42蛋白團塊 ........................................... 49
3.3 金奈米棒對Aβ42蛋白團塊的破壞 ......................................... 51
3.3.1 金奈米棒與Aβ42蛋白團塊的混合 ............................... 51
3.3.2 Aβ42蛋白團塊與金奈米棒照射紅外光 .......................... 52
第四章 結論............................................................................................. 55
參考文獻 ................................................................................................... 57
1.
Chen, H., Shao, L., Li, Q., & Wang, J. (2013). Gold nanorods and their plasmonic properties. Chemical Society Reviews, 42(7), 2679-2724.
2.
Sidorova, M., & Popov, A. (2023). Synthesis of Gold Nanorods for Multifaceted Applications. Chemistry Proceedings, 14(1), 11.
3.
Xie, L., Zhang, X., Chu, C., Dong, Y., Zhang, T., Li, X., Liu, G., Cai, W., & Han, S. (2021). Preparation, toxicity reduction and radiation therapy application of gold nanorods. Journal of Nanobiotechnology, 19, Article 454.
4.
U.S. Food and Drug Administration. (2023, September). Use of International Standard ISO 10993-1, "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process".
5.
Liao, S., Yue, W., Cai, S., Tang, Q., Lu, W., Huang, L., Qi, T., & Liao, J. (2021). Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Frontiers in Pharmacology, 12, Article 664123.
6.
Xu, X., Zhao, Y., Xue, X., Huo, S., Chen, F., Zou, G., & Liang, X.-J. (2014). Seedless synthesis of high aspect ratio gold nanorods with high yield. Journal of Materials Chemistry A, 2(10), 3528-3535.
7.
Zhou, R., Zhang, M., Xi, J., et al. (2022). Gold nanorods-based photothermal therapy: Interactions between biostructure, nanomaterial, and near-infrared irradiation. Nanoscale Research Letters, 17, 68.
8.
Wei, M., Qian, J., & Zhan, Q. (2009). Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods. Frontiers of Optoelectronics in China, 2(2), 141–145.
9.
Vines, J. B., Yoon, J.-H., Ryu, N.-E., Lim, D.-J., & Park, H. (2019). Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry, 7, Article 167.
10.
Kesharwani, P., Ma, R., & Sang, L. (2023). Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Molecular Cancer, 22, 98.
11.
Jankovic, J., et al. (Eds.). (2022). Alzheimer disease and other dementias. In J. B. Bradley & R. B. Daroff (Eds.), Bradley and Daroff's Neurology in Clinical Practice (8th ed.). Elsevier.
12.
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., . . . & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of The Lancet Commission. The Lancet, 396(10248), 413-446.
13.
Chen, L., Niu, X., Wang, Y., Lv, S., Zhou, X., Yang, Z., & Peng, D. (2022). Plasma tau proteins for the diagnosis of mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Frontiers in Aging Neuroscience, 14, Article 942629.
14.
Alzheimer's Disease International. (2020). World Alzheimer Report 2020: Design, dignity, dementia: Dementia-related design and the built environment. Alzheimer's Disease International.
15.
Tanzi, R. E., & Bertram, L. (2005). Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 120(4), 545-555.
16.
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer's disease. Alzheimer's & Dementia, 3(3), 186-191.
17.
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., ... & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413-446.
18.
Omura, J. D., McGuire, L. C., Patel, R., et al. (2022). Modifiable risk factors for Alzheimer disease and related dementias among adults aged ≥45 years — United States, 2019. MMWR Morbidity and Mortality Weekly Report, 71(24), 680-685.
19.
Wang, Y., Chen, J., Gao, F., Hu, M., & Wang, X. (2023). Recent developments in the chemical biology of amyloid-β oligomer targeting. Organic & Biomolecular Chemistry, 21(22), 4540-4552.
20.
Erbas-Cakmak, S., Kolemen, S., Sedgwick, A. C., Gunnlaugsson, T., James, T. D., Yoon, J., & Akkaya, E. U. (2018). Molecular logic gates: The past, present and future. Chemical Society Reviews, 47(7), 2228-2248.
21.
Schäfer, A., Chaggar, P., Thompson, T. B., Goriely, A., & Kuhl, E. (2021). Predicting brain atrophy from tau pathology: A summary of clinical findings and their translation into personalized models. Brain, 144(4), 1000-1039.
22.
Heppner, F. L., Ransohoff, R. M., & Becher, B. (2015). Immune attack:The role of inflammation in Alzheimer disease.Nature Reviews Neuroscience, 16(6), 358-372.
23.
Omura, J. D., McGuire, L. C., Patel, R., et al. (2022). Modifiable risk factors for Alzheimer disease and related dementias among adults aged ≥45 years — United States, 2019. MMWR Morbidity and Mortality Weekly Report, 71, 680–685.
24.
Nature Communications. (2024). Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment. Nature Communications.
25.
Medical Xpress. (2024, March 12). Study opens the door to earlier diagnosis and potential treatment for Alzheimer's disease. Medical Xpress.
26.
Nature. (2024). Researchers call for a major rethink of how Alzheimer’s treatments are evaluated. Nature, 627, S18-S20.
27.
Sienski, G., et al. (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583), eaaz4564.
28.
BrightFocus Foundation. (2024, March 26). What’s next for Alzheimer’s disease treatments: A 2024 forecast. BrightFocus Foundation.
29.
Omura, J. D., McGuire, L. C., Patel, R., et al. (2022). Modifiable risk factors for Alzheimer disease and related dementias among adults aged ≥45 years — United States, 2019. MMWR Morbidity and Mortality Weekly Report, 71(24), 680-685.
30.
Araya, E., Olmedo, I., Bastús, N. G., & Puntes, V. (2008). Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Research Letters, 3, 435.
31.
Triulzi, R. C., Dai, Q., Zou, J., Leblanc, R. M., Gu, Q., Orbulescu, J., & Huo, Q. (2008). Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 63(2), 200-208.
32.
Kogan, M. J., Bastús, N. G., Amigo, R., Grillo-Bosch, D., Araya, E., Turiel, A., Labarta, A., Giralt, E., & Puntes, V. F. (2006). Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Letters, 6(1), 110-115.
33.
Rovnyagina, N. R., Budylin, G. S., Vainer, Y. G., Tikhonova, T. N., Vasin, S. L., Yakovlev, A. A., Kompanets, V. O., Chekalin, S. V., Priezzhev, A. V., & Shirshin, E. A. (2020). Fluorescence lifetime and intensity of Thioflavin T as reporters of different fibrillation stages:Insights obtained from fluorescence up-conversion and particle size distribution measurements. International Journal of Molecular Sciences, 21(17), 6169.
34.
Tracy, G. C., Huang, K.-Y., Hong, Y.-T., Ding, S., Noblet, H. A., Lim, K. H., Kim, E. C., Chung, H. J., & Kong, H. (2023). Intracerebral nanoparticle transport facilitated by Alzheimer pathology and age. Nano Letters, 23(23), 10971–10982.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top