參考文獻
1.熊国欣、李立本. 核磁共振成像原理. 科學出版社, 2007, 1–242.
2.金永君、艾延寶. 核磁共振技術及應用. 物理與工程, 2002, 01, 47- 50.
3.核磁共振 Magnetic Resonance Imaging, MRI. 醫學紀實, 2018, 1.
4.董騰元. 同位素的應用(Applications of Isotopes). 科學Online, 2008, 1.
5. CY. Chou, Ph. d. 醫學影像成像原理:Magnetic Resonance Imaging (MRI). 國立台灣大學, 2021, 1-20.
6.李正輝. MRI 基本物理原理. 中華民國醫事放射學會-TWSRT, 2016, 1–21.
7. N. Bloembergen, E. M. Purcell, R. V. Pound. Relaxation Effects in Nuclear Magnetic Resonance Absorption. APS, 1948, 73, 7, 679–712.
8.曾堯暉. 顯影劑簡介. 中華民國醫事放射線醫學會, 2019, 1.
9.陳雅玟, 張文釧, 蔡敏鈴. 淺談顯影劑. 藥物科學 Pharmaceutical Sciences, 2011/12/31, 27, 4, 1–5.
10. N. Lee, D. Yoo, D. Ling, MH. Cho, T. Hyeon, and J. Cheon. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 2015, 115, 19, 10637–10689.
11. S. Li, J.A. Eastman, Z. Li, C.M. Foster, R.E. Newnham, L.E. Cross. Size Effects in Nanostructured Ferroelectrics. Physics Letters A, 1996, 212, 6, 341-346.
12. Otsuka 大塚科技. 粒徑界達電位 奈米材料特性. TECHNICAL ARTICLES, 2023, 1.
13. AK. Swain, L.Pradhan, and D. Bahadur. Polymer Stabilized Fe3O4- Graphene as an Amphiphilic Drug Carrier for Thermo- Chemotherapy of Cancer. ACS Applied Materials & Interfaces, 2015, 7, 15, 8013–8022.
14. Q. Kang, XY. Xing, SQ. Zhang, L. He, JZ. Li, JB. Jiao, XJ. Du, S. Wang. A novel Aptamer-induced CHA Amplification Strategy for Ultrasensitive Detection of Staphylococcus aureus and NIR-triggered Photothermal Bactericidal Activity Based on Aptamer-modified Magnetic Fe3O4 @ AuNRs. Sensors & Actuators: B. Chemical, 2023, 382, 133554.
15. E. K.. McCloskey, J. J.. Chalmers, and M. Zborowski. Magnetic Cell Separation: Characterization of Magnetophoretic Mobility. Analytical Chemistry, 2003, 75, 24, 6868–6874.
16. Z. Guo, M. Wang, L. Qiao, J. Wang, and Z. He. Photothermal, Magnetic, and Superhydrophobic PU Sponge Decorated with a Fe3O4/ MXene/ Lignin Composite for Efficient Oil/ Water Separation. Langmuir, 2023, 39, 47, 16935–16953.
17. A. R. Muslimov, A. S. Timin, A. V. Petrova, O. S. Epifanovskaya, A. I. Shakirova, K. V. Lepik, A. Gorshkov, E. V. Il’inskaja, A. V. Vasin, B. V. Afanasyev, B. Fehse, and G. B. Sukhorukov. Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation. ACS Biomaterials Science & Engineering, 2017, 3, 10, 2314–2324.
18.鄭豐裕., 氧化鐵奈米醫藥發展. 科技大觀園, 2015, 1.
19.黃景弘. 四氧化三鐵奈米粒子之合成及應用研究. 國立臺灣大學碩士論文, 華藝線上圖書館, 2007, 1-120.20. L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, and Z. Gu. Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics, 2013, 3, 8, 595–615.
21. J. Kang, C. Hu, X. Liu, H. Zhou, X. Lin, and J. Gu. One-Pot Synthesis of Magnetic Nanocellulose/ Fe3O4 Hybrids Using FeCl3 as Cellulose Hydrolytic Medium and Fe3O4 Precursor. ACS Sustainable Chemistry & Engineering, 2024, 12, 15, 5917–5926.
22. M. Cho, J. Villanova, D. M. Ines, J. Chen, SS. Lee, Z. Xiao, X. Guo, J. A. Dunn, D. D. Stueber, P. Decuzzi, and V. L. Colvin. Sensitive T2 MRI Contrast Agents from the Rational Design of Iron Oxide Nanoparticle Surface Coatings. The Journal of Physical Chemistry C, 2023, 127, 2, 1057–1070.
23. TH. Shin, JS. Choi, S. Yun, IS. Kim, HT. Song, Y. Kim, K. I. Park, and J. Cheon. T1 and T2 Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials. ACS Nano, 2014, 8, 4, 3393–3401
24. R. Qiao, C. Yang, and M. Gao. Uperparamagnetic Iron Oxide Nanoparticles: from Preparations to in vivo MRI Applications. Chemistry, CAS, 2009, 19, 6274-6293.
25. Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang, R. H. Stauber, and M. Gao. Small is Smarter: Nano MRI Contrast Agents – Advantages and Recent Achievements. Small, 2015, 12, 5, 556-576.
26.黃韋翔. 四氧化三鐵奈米粒子在核磁共振造影顯影劑的應用. 國立成功大學 碩士論文, 台灣博碩士論文知識加值系統, 2004, 1-70.27. V. Babin, F. Taran, and D. Audisio. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS Au, 2022, 2, 6, 1234–1251.
28. D. Wang, G. Han, M. Hu, Y. Wang, J. Liu, J. Zeng, and X. Li. Evaporation Processes in the Upper River Water of the Three Gorges Reservoir: Evidence from Triple Oxygen Isotopes. ACS Earth and Space Chemistry, 2021, 5, 10, 2807–2816.
29. T. J. Rosera, S. E. Janssen, M. T. Tate, R. F. Lepak, J. M. Ogorek, J. F. DeWild, D. P. Krabbenhoft, and J. P. Hurley. Methylmercury Stable Isotopes: New Insights on Assessing Aquatic Food Web Bioaccumulation in Legacy Impacted Regions. ACS ES&T Water, 2022, 2, 5, 701–709.
30. C. M. Bergen. Tracer Isotopes in Biochemistry. Journal of Chemical Education, 1952, 29, 2, 84.
31. F. Castiglione, A. Mele, and G. Raos. 17O NMR: A “Rare and Sensitive” Probe of Molecular Interactions and Dynamics. Annual Reports of NMR Spectroscopy, 2015, 85, 143-193.
32. M. Elsner, M. Chartrand, N. VanStone, G. L. Couloume, and B. S. Lollar. Identifying Abiotic Chlorinated Ethene Degradation: Characteristic Isotope Patterns in Reaction Products with Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2008, 42, 16, 5963–5970.
33. M. Lepron, M. Daniel-Bertrand, G. Mencia, B. C. Feuillastre, and G. Pieters. Nanocatalyzed Hydrogen Isotope Exchange. Accounts of Chemical Research. Res, 2021, 54, 6, 1465–1480.
34. Y. Yin, Z. Tan, L. Hu, S. Yu, J. Liu, and G. Jiang. Isotope Tracers to Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chemical Reviews, 2017, 117, 5, 4462–4487.
35.陳慧餘. 中國大百科全書, 超順磁性, 中國大百科全書出版社, 1987, 74.
36. CC. Chen, YJ. Hsu, YF. Lin, and SY. Lu. Superparamagnetism Found in Diluted Magnetic Semiconductor Nanowires: Mn-Doped CdSe. The Journal of Physical Chemistry C, 2008, 112, 46, 17964–17968.
37. A. Koudrina and C. Maria. DeRosa. Advances in Medical Imaging: Aptamer- and Peptide-Targeted MRI and CT Contrast Agents. ACS Omega, 2020, 5, 36, 22691–22701.
38.吳俊逸. 四氧化三鐵顆粒加工之研究 磁性微粒Fe3O4的製備研究. 國立台北科技大學 碩士論文, 華藝線上圖書館, 2007, 1-3.39. Chemicalbook.甘胺酸(56-40-6)紅外線圖譜(IR1). CAS資料庫列表, 1.
40. O. Alduhaish, M. Ubaidullah, A. M. Al-Enizi, N. Alhokbany, S. M. Alshehri, and J. Ahmed. Facile Synthesis of Mesoporous α-Fe2O3 @ g-C3N4-NCs for Efficient Bifunctional Electro-catalytic Activity (OER/ORR). Nature, 2019, Scientific Reports, 9, 14139.
41. NN. Song, HT. Yang, HL. Liu, X. Ren, HF. Ding, XQ. Zhang, and ZH. Cheng. Exceeding Natural Resonance Frequency Limit of Monodisperse Fe3O4 Nanoparticles Via Superparamagnetic Relaxation. Scientific Reports, 2013, 3, 3161.
42.王尊信, 洪連輝. 磁滯曲線. 科學Online, 2011, 1.