跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳亭瑄
研究生(外文):Chen, Ting-Hsuan
論文名稱:製備富含17O同位素之創新四氧化三鐵奈米粒子
論文名稱(外文):Preparation and characterization of 17O-rich iron oxide nanoparticles
指導教授:鄭豐裕鄭豐裕引用關係
指導教授(外文):Cheng, Fong-Yu
口試委員:蘇平貴呂晃志
口試委員(外文):Su, Pi-GueyLeu, Hoang Jyh
口試日期:2024-06-27
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:53
中文關鍵詞:同位素四氧化三鐵奈米粒子MRI顯影劑氧-17
外文關鍵詞:IsotopeFe3O4 NanoparticlesMRI contrast agent17O
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磁共振造影(MRI)是目前熱門且能力強大的分子影像儀器,其中顯影劑是很重要且關鍵的角色,顯影劑可以提供更優良的組織影像對比度和影像解析度,但顯影劑發展受到元素選擇限制(T1顯影劑)和可選擇的超順磁性材料(T2顯影劑)在臨床醫學需求的限制,目前顯影劑的研發或改良都面臨到了瓶頸,無法有突破性的進展。因此本研究研發一種富含穩定同位素17O的四氧化三鐵磁性奈米粒子(Fe317O4 NPs),相較於Fe3O4 NPs,具有更低的T2值和更高的r2值,因此Fe317O4 NPs具有更高的組織對比度和偵測靈敏度。Fe317O4 NPs對 MRI顯影劑的發展瓶頸可說是一個突破性的進展,也是創新及有潛力的奈米材料。最重要的是Fe317O4 NPs沒有輻射傷害問題,在一般環境下就可以使用,Fe3O4 NPs是目前被允許可使用在人體的奈米材料,故Fe317O4 NPs成為新一代的兼具T1和T2型顯影劑是非常具有機會和潛力。
Magnetic resonance imaging(MRI)is currently a popular and powerful molecular imaging technology, in which contrast agents play a very important and critical role. Contrast agents can provide better tissue image contrast and resolution, but the development of contrast agents is limited in current situation. The main problem of T1 contrast agent is elemental selectivity is limited. The main limitation of T2 contrast agent is that only iron oxide nanoparticles can be used clinically. Current development or improvement of contrast agents is facing a bottleneck and cannot make breakthrough progress. Therefore, this study developed the 17O-rich iron oxide nanoparticles(Fe317O4 NPs). Compared with Fe3O4 NPs, Fe317O4 NPs have a lower T2 value and a higher r2 value. Thus, Fe317O4 NPs are expected to have higher tissue contrast and detection sensitivity. Fe317O4 NPs is an innovative and promising nanomaterial and a breakthrough development for MRI contrast agents. The most important point is that Fe317O4 NPs do not have radiation damage and can be used in normal environment. Fe3O4 NPs are nanomaterials that are currently allowed to be used in the human body. Therefore, Fe317O4 NPs have great opportunities and potential to become a new generation of T1 and T2 contrast agents.
總目錄
謝誌 I
摘要 III
Abstract IV
總目錄 V
圖目錄 VII
表目錄 VIII
第一章 序論 1
1-1前言 1
1-2研究動機 3
第二章 理論基礎與材料介紹 5
2-1 MRI之基本介紹 5
2-3奈米材料的介紹與應用 8
2-6順磁性 12
第三章 實驗設計與分析 15
3-1實驗藥品 15
3-2實驗器材與儀器設備 16
3-2-1實驗器材 16
3-2-2儀器設備 17
3-3實驗流程與步驟 18
3-3-1一般四氧化三鐵奈米粒子NH2-Fe3O4 NPs的製備 18
3-3-2 NH2-Fe317O4 NPs實驗組組1與實驗組2的製備 19
3-4數據量測 22
第四章 結果與討論 23
4-1四氧化三鐵奈米粒子的合成和其材料表面特徵之探討 23
4-1-1紅外線光譜儀(FTIR)數據分析 23
4-1-3粒徑及表面電位(DLS)數據分析 27
4-2 NH2-Fe3O4 NPs及NH2-Fe317O4 NPs的材料結構特徵探討 28
4-2-1 X光繞射分析儀(XRD)數據分析 28
第五章 結論 37
參考文獻 38
參考文獻
1.熊国欣、李立本. 核磁共振成像原理. 科學出版社, 2007, 1–242.
2.金永君、艾延寶. 核磁共振技術及應用. 物理與工程, 2002, 01, 47- 50.
3.核磁共振 Magnetic Resonance Imaging, MRI. 醫學紀實, 2018, 1.
4.董騰元. 同位素的應用(Applications of Isotopes). 科學Online, 2008, 1.
5. CY. Chou, Ph. d. 醫學影像成像原理:Magnetic Resonance Imaging (MRI). 國立台灣大學, 2021, 1-20.
6.李正輝. MRI 基本物理原理. 中華民國醫事放射學會-TWSRT, 2016, 1–21.
7. N. Bloembergen, E. M. Purcell, R. V. Pound. Relaxation Effects in Nuclear Magnetic Resonance Absorption. APS, 1948, 73, 7, 679–712.
8.曾堯暉. 顯影劑簡介. 中華民國醫事放射線醫學會, 2019, 1.
9.陳雅玟, 張文釧, 蔡敏鈴. 淺談顯影劑. 藥物科學 Pharmaceutical Sciences, 2011/12/31, 27, 4, 1–5.
10. N. Lee, D. Yoo, D. Ling, MH. Cho, T. Hyeon, and J. Cheon. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 2015, 115, 19, 10637–10689.
11. S. Li, J.A. Eastman, Z. Li, C.M. Foster, R.E. Newnham, L.E. Cross. Size Effects in Nanostructured Ferroelectrics. Physics Letters A, 1996, 212, 6, 341-346.
12. Otsuka 大塚科技. 粒徑界達電位 奈米材料特性. TECHNICAL ARTICLES, 2023, 1.
13. AK. Swain, L.Pradhan, and D. Bahadur. Polymer Stabilized Fe3O4- Graphene as an Amphiphilic Drug Carrier for Thermo- Chemotherapy of Cancer. ACS Applied Materials & Interfaces, 2015, 7, 15, 8013–8022.
14. Q. Kang, XY. Xing, SQ. Zhang, L. He, JZ. Li, JB. Jiao, XJ. Du, S. Wang. A novel Aptamer-induced CHA Amplification Strategy for Ultrasensitive Detection of Staphylococcus aureus and NIR-triggered Photothermal Bactericidal Activity Based on Aptamer-modified Magnetic Fe3O4 @ AuNRs. Sensors & Actuators: B. Chemical, 2023, 382, 133554.
15. E. K.. McCloskey, J. J.. Chalmers, and M. Zborowski. Magnetic Cell Separation:  Characterization of Magnetophoretic Mobility. Analytical Chemistry, 2003, 75, 24, 6868–6874.
16. Z. Guo, M. Wang, L. Qiao, J. Wang, and Z. He. Photothermal, Magnetic, and Superhydrophobic PU Sponge Decorated with a Fe3O4/ MXene/ Lignin Composite for Efficient Oil/ Water Separation. Langmuir, 2023, 39, 47, 16935–16953.
17. A. R. Muslimov, A. S. Timin, A. V. Petrova, O. S. Epifanovskaya, A. I. Shakirova, K. V. Lepik, A. Gorshkov, E. V. Il’inskaja, A. V. Vasin, B. V. Afanasyev, B. Fehse, and G. B. Sukhorukov. Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation. ACS Biomaterials Science & Engineering, 2017, 3, 10, 2314–2324.
18.鄭豐裕., 氧化鐵奈米醫藥發展. 科技大觀園, 2015, 1.
19.黃景弘. 四氧化三鐵奈米粒子之合成及應用研究. 國立臺灣大學碩士論文, 華藝線上圖書館, 2007, 1-120.
20. L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, and Z. Gu. Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics, 2013, 3, 8, 595–615.
21. J. Kang, C. Hu, X. Liu, H. Zhou, X. Lin, and J. Gu. One-Pot Synthesis of Magnetic Nanocellulose/ Fe3O4 Hybrids Using FeCl3 as Cellulose Hydrolytic Medium and Fe3O4 Precursor. ACS Sustainable Chemistry & Engineering, 2024, 12, 15, 5917–5926.
22. M. Cho, J. Villanova, D. M. Ines, J. Chen, SS. Lee, Z. Xiao, X. Guo, J. A. Dunn, D. D. Stueber, P. Decuzzi, and V. L. Colvin. Sensitive T2 MRI Contrast Agents from the Rational Design of Iron Oxide Nanoparticle Surface Coatings. The Journal of Physical Chemistry C, 2023, 127, 2, 1057–1070.
23. TH. Shin, JS. Choi, S. Yun, IS. Kim, HT. Song, Y. Kim, K. I. Park, and J. Cheon. T1 and T2 Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials. ACS Nano, 2014, 8, 4, 3393–3401
24. R. Qiao, C. Yang, and M. Gao. Uperparamagnetic Iron Oxide Nanoparticles: from Preparations to in vivo MRI Applications. Chemistry, CAS, 2009, 19, 6274-6293.
25. Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang, R. H. Stauber, and M. Gao. Small is Smarter: Nano MRI Contrast Agents – Advantages and Recent Achievements. Small, 2015, 12, 5, 556-576.
26.黃韋翔. 四氧化三鐵奈米粒子在核磁共振造影顯影劑的應用. 國立成功大學 碩士論文, 台灣博碩士論文知識加值系統, 2004, 1-70.
27. V. Babin, F. Taran, and D. Audisio. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS Au, 2022, 2, 6, 1234–1251.
28. D. Wang, G. Han, M. Hu, Y. Wang, J. Liu, J. Zeng, and X. Li. Evaporation Processes in the Upper River Water of the Three Gorges Reservoir: Evidence from Triple Oxygen Isotopes. ACS Earth and Space Chemistry, 2021, 5, 10, 2807–2816.
29. T. J. Rosera, S. E. Janssen, M. T. Tate, R. F. Lepak, J. M. Ogorek, J. F. DeWild, D. P. Krabbenhoft, and J. P. Hurley. Methylmercury Stable Isotopes: New Insights on Assessing Aquatic Food Web Bioaccumulation in Legacy Impacted Regions. ACS ES&T Water, 2022, 2, 5, 701–709.
30. C. M. Bergen. Tracer Isotopes in Biochemistry. Journal of Chemical Education, 1952, 29, 2, 84.
31. F. Castiglione, A. Mele, and G. Raos. 17O NMR: A “Rare and Sensitive” Probe of Molecular Interactions and Dynamics. Annual Reports of NMR Spectroscopy, 2015, 85, 143-193.
32. M. Elsner, M. Chartrand, N. VanStone, G. L. Couloume, and B. S. Lollar. Identifying Abiotic Chlorinated Ethene Degradation: Characteristic Isotope Patterns in Reaction Products with Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2008, 42, 16, 5963–5970.
33. M. Lepron, M. Daniel-Bertrand, G. Mencia, B. C. Feuillastre, and G. Pieters. Nanocatalyzed Hydrogen Isotope Exchange. Accounts of Chemical Research. Res, 2021, 54, 6, 1465–1480.
34. Y. Yin, Z. Tan, L. Hu, S. Yu, J. Liu, and G. Jiang. Isotope Tracers to Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chemical Reviews, 2017, 117, 5, 4462–4487.
35.陳慧餘. 中國大百科全書, 超順磁性, 中國大百科全書出版社, 1987, 74.
36. CC. Chen, YJ. Hsu, YF. Lin, and SY. Lu. Superparamagnetism Found in Diluted Magnetic Semiconductor Nanowires: Mn-Doped CdSe. The Journal of Physical Chemistry C, 2008, 112, 46, 17964–17968.
37. A. Koudrina and C. Maria. DeRosa. Advances in Medical Imaging: Aptamer- and Peptide-Targeted MRI and CT Contrast Agents. ACS Omega, 2020, 5, 36, 22691–22701.
38.吳俊逸. 四氧化三鐵顆粒加工之研究 磁性微粒Fe3O4的製備研究. 國立台北科技大學 碩士論文, 華藝線上圖書館, 2007, 1-3.
39. Chemicalbook.甘胺酸(56-40-6)紅外線圖譜(IR1). CAS資料庫列表, 1.
40. O. Alduhaish, M. Ubaidullah, A. M. Al-Enizi, N. Alhokbany, S. M. Alshehri, and J. Ahmed. Facile Synthesis of Mesoporous α-Fe2O3 @ g-C3N4-NCs for Efficient Bifunctional Electro-catalytic Activity (OER/ORR). Nature, 2019, Scientific Reports, 9, 14139.
41. NN. Song, HT. Yang, HL. Liu, X. Ren, HF. Ding, XQ. Zhang, and ZH. Cheng. Exceeding Natural Resonance Frequency Limit of Monodisperse Fe3O4 Nanoparticles Via Superparamagnetic Relaxation. Scientific Reports, 2013, 3, 3161.
42.王尊信, 洪連輝. 磁滯曲線. 科學Online, 2011, 1.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top