Almabdy, S. and Elrefaei L., "Deep Convolutional Neural Network-Based Approaches for Face Recognition", Applied Sciences ,vol 9, 20, pp. 4397, 2019.
Alqahtani, Z. R., Sunar, M. S., and Ali, A., "Landmark Localization in Occluded Faces Using Deep Learning Approach", Innovative Systems for Intelligent Health Informatics, Vol 72, pp. 1023–1029, May 2021.
Arnold, D., Li, X., and Lin, Y., Zhonghui Wang, Won-Jae Yi, Jafar Saniie, "IoT Framework for 3D Body Posture Visualization", IEEE International Conference on Electro Information Technology, pp. 117-120, 2020.
Boiron, M., Nobrega, L. D., Roux, S., Henrot, A., and Saliba, E.,"Effects of oral stimulation and oral support on non-nutritive sucking and feeding performance in preterm infants", Developmental medicine and child neurology, vol. 49, 6, pp. 439-444, June 2007.
Du-Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D., "What is AI? Applications of artificial intelligence to dermatology", The British journal of dermatology, 183(3), pp. 423–430, September 2020.
Gupta, N., "A Literature Survey on Artificial Intelligence", INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY, Volume 5, Issue 19, 2017.
Hjelmås, E. and Low, B. K. , "Face Detection: A Survey", Computer Vision and Image Understanding, Volume 83, Issue 3, pp. 236-274, 2021.
Howard, A. G., Zhu, M., Chen B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H., "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", Computer Science Computer Vision and Pattern Recognition, Apr 2017.
Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H.,"Searching for MobileNetV3", Computer Science Computer Vision and Pattern Recognition, May 2019
Hubel, D. H. and Wiesel, T. N., "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex", The Journal of physiology, vol. 160, 1 pp. 106-54, 1962.
Keyvanpour, M. R., Vahidiansadegh, S., and Mirzakhani, Z., "An analytical review of texture feature extraction approaches", International Journal of Computer Applications in Technology, vol. 65, pp. 118, 2021.
Khalid, S., Khalil, T., and Nasreen, S., "A survey of feature selection and feature extraction techniques in machine learning", 2014 Science and Information Conference, pp. 372-378, London, UK, 2014.
Krizhevsky, A., Sutskever, I. ,and Hinton, G. E., "ImageNet classification with deep convolutional neural networks", In Proceedings of the 25th International Conference on Neural Information Processing Systems, Volume 1, pp. 1097–1105, December 2012.
Kulikajevas, A., Maskeliunas, R., and Damaševičius, R., "Detection of sitting posture using hierarchical image composition and deep learning", PeerJ. Computer science, vol. 7, March 2021.
Lee, C. and Landgrebe, D.A., "Feature extraction based on decision boundaries,", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 388-400, April 1993.
Medjahed, S. A., "A Comparative Study of Feature Extraction Methods in Images Classification", International Journal of Image, Graphics and Signal Processing, vol. 7, pp. 16-23, 2015.
P.S, S. K. and Vs, D., "Extraction of Texture Features using GLCM and Shape Features using Connected Regions", International Journal of Engineering and Technology, vol. 8, 6, pp. 2926-2930, December 2016.
Prakash, R. M., Thenmoezhi, N., and Gayathri, M., "Face Recognition with Convolutional Neural Network and Transfer Learning", International Conference on Smart Systems and Inventive Technology, pp. 861-864, 2019.
Salau, A. O. and Jain, S., "Feature Extraction: A Survey of the Types, Techniques, Applications", 2019 International Conference on Signal Processing and Communication , pp. 158-164, NOIDA, India, 2019.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C., "MobileNetV2: Inverted Residuals and Linear Bottlenecks", Computer Science Computer Vision and Pattern Recognition, Jan 2018
Simonyan, K. and Zisserman, A., "Very Deep Convolutional Networks for Large-Scale Image Recognition", 3rd International Conference on Learning Representations, pp. 1–14, 2015.
Tian, D., "A review on image feature extraction and representation techniques", International Journal of Multimedia and Ubiquitous Engineering, vol. 8, pp.385-395, 2013.
Venkateswarlu, I. B., Kakarla, J., and Prakash, S., "Face mask detection using MobileNet and Global Pooling Block," 2020 IEEE 4th Conference on Information & Communication Technology ,pp. 1-5, Chennai, India, 2020.
Zhang, X., Cui, J., Wang, W., and Lin, C., "A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm", Sensors, vol. 17, no. 7, pp.1474, 2017.
何怡慧、劉秀月、黃純德,「復健期腦中風病患咀嚼吞嚥障礙盛行率及初步篩檢徵象之探討」,護理雜誌,第61卷,第2期,頁54-62,民國103年。
施博文,「基於機器訓練機器技術建構姿態與深度估算的多任務深度學習網路模型」,國立交通大學資訊科學與工程研究所,碩士論文,民國109年。夏至賢、陳昭和、郭景明、李永祥,「多混合特徵法於自主投籃姿勢辨識」,NCS 2017 全國計算機會議,頁443-448,台北,民國107年。
陳旭萱,「發展障礙兒童口腔動作障礙的形成與處理」,職能治療學會雜誌,第7卷,頁61-72,民國78年。
陳志嘉,「口腔健康促進之介入對高齡者口腔機能及生活品質的成效-以苗栗縣為例」,高雄醫學大學,碩士在職專班學位論文,民國105年。陳昭明,深度學習 最佳入門邁向AI專題實戰,深智數位股份有限公司,台北,民國111年6月。
衛生福利部統計處,身心障礙統計專區,https://dep.mohw.gov.tw/dos/cp-5224-62359-113.html ,2024。
蕭素燕、林嘉德、鄭元凱、郭憲文、蔡銘修,「合併口運動功能異常與構音障礙兒童口功能訓練之成效」,Mid-Taiwan Journal of Medicine,第9卷,第s_1期,頁44-52,民國93年。
戴邦地,「基於深度學習之復健動作辨識系統」,國立中央大學,碩士論文,民國106年。