跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃天俊
研究生(外文):HUANG, TIEN-CHUN
論文名稱:影響銀行客戶接受理財專員服務因素之研究
論文名稱(外文):Research on Factors Influencing Bank Customers' Acceptance of Wealth Management Services
指導教授:劉秀雯劉秀雯引用關係
指導教授(外文):LIU, HSIU-WEN
口試委員:蔡顯童李涵劉秀雯
口試委員(外文):TSAI, HSIEN-TUNGLEE, HANLIU, HSIU-WEN
口試日期:2024-05-31
學位類別:碩士
校院名稱:東吳大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:45
中文關鍵詞:期望確認理論情緒理財專員銀行客戶採用理專建議
外文關鍵詞:Expectation Confirmation TheoryEmotionFinancial AdvisorBank CustomersFinancial ServicesAdoption of Advisor Recommendations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
隨著金融市場的日益複雜化,傳統金融機構正面臨全新的改革挑戰,理財專員在銀行服務中扮演了重要角色。本研究的目的是探討影響銀行客戶接受理財專員服務的多種因素,包括認知偏差、選擇架構、期望確認、情緒、採用理專建議與社會影響以及個性化服務等。且過去研究鮮少針對銀行客戶此族群為討論主題,因此本研究以銀行客戶為研究對象,本研究旨在深入了解這些因素如何影響客戶的決策過程和行為,從而為金融機構和理財專員提供具體的建議,以提升客戶服務的效果和接受度。
透過研究影響客戶接受理財服務的因素,金融機構可以優化其服務流程和策略,從而提高客戶的滿意度和忠誠度,增加客戶留存率。金融機構需要通過提供優質的理財服務來吸引和保持客戶。了解並應對影響客戶接受服務的因素,有助於金融機構在市場中保持競爭優勢。
本研究旨在探討影響銀行客戶接受理財專員服務的關鍵因素,透過立意抽樣的方式進行問卷調查,以銀行客戶為研究對象,並透過問卷調查法收集數據,有效樣本共計285份。本研究採用量化分析方法,包括描述性統計、因子分析、信度分析以及層級迴歸分析等技術,評估各項因素對客戶接受度的影響。
研究結果顯示發現,期望確認、情緒、採用理專建議是影響客戶接受理財專員服務的主要顯著因素。本研究目的不僅為銀行業提供了如何改善理財專員服務的見解,也為理財專員在提升客戶服務質量和建立長期關係上提供了實證支持。研究貢獻,過往鮮少針對銀行客戶進行研究,透過實證可以更了解到銀行客戶選擇理專所著重的部分。實務上為金融機構提供了具體的改進建議,希望能對在金融科技不斷更新衝擊下,可提供出銀行針對這些客戶接受理財專員服務的真實需求,具有重要的應用價值和現實意義。

As the financial market becomes increasingly complex, traditional financial institutions are facing new challenges for reform, and financial advisors play a crucial role in banking services. This study aims to explore various factors that influence bank customers' acceptance of financial advisor services, including cognitive biases, choice architecture, expectation confirmation, emotions, adoption of advisor recommendations, social influence, and personalized services. Previous studies have rarely focused on bank customers as a subject of discussion; therefore, this study targets bank customers. The aim is to gain an in-depth understanding of how these factors affect customers' decision-making processes and behaviors, thereby providing specific recommendations for financial institutions and financial advisors to improve the effectiveness and acceptance of customer services.

By studying the factors influencing customers' acceptance of financial services, financial institutions can optimize their service processes and strategies, thereby enhancing customer satisfaction and loyalty and increasing customer retention rates. Financial institutions need to attract and retain customers by providing high-quality financial services. Understanding and addressing the factors affecting customers' acceptance of services helps financial institutions maintain a competitive advantage in the market.

This study aims to explore the key factors influencing bank customers' acceptance of financial advisor services. A purposive sampling method was used to conduct a questionnaire survey targeting bank customers, and data was collected through this method, resulting in a total of 285 valid samples. This study employs quantitative analysis methods, including descriptive statistics, factor analysis, reliability analysis, and hierarchical regression analysis, to evaluate the impact of various factors on customer acceptance.The results of the study reveal that expectation confirmation, emotions, and the adoption of advisor recommendations are the main significant factors influencing customers' acceptance of financial advisor services.

The purpose of this study is not only to provide insights into improving financial advisor services for the banking industry but also to offer empirical support for financial advisors in enhancing customer service quality and establishing long-term relationships. The study contributes by addressing the previously under-researched area of bank customers and providing empirical insights into the aspects bank customers prioritize when choosing financial advisors. Practically, the study provides specific improvement suggestions for financial institutions, aiming to address the real needs of bank customers in accepting financial advisor services in the face of the ongoing impact of fintech innovations, offering significant application value and practical significance.

目 錄
中文摘要 i
ABSTRACT ii
目 錄 iii
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1 背景動機 1
1.2 研究目的 3
1.3 研究流程 5
第二章 文獻回顧 6
2.1期望確認理論 6
2.2技術接受模型(technology acceptance model) 8
2.3計劃行為理論(TPB) 9
2.4 AIDUA模型研究架構 10
2.5 理財機器人服務與傳統理財專員服務之比較 11
第三章 研究方法 13
第四章 研究結果 22
4.1 樣本結構分析 22
4.2 敘述性統計分析 23
4.3 相關分析 27
4.4 信度分析 28
4.5 因素分析 29
4.6 層級迴歸分析 31
4.7 假設驗證結果與分析 33
第伍章 結論與建議 37
參考文獻 40
附錄一 問卷 43


一、中文文獻

蕭至惠, 蔡進發, & 盧信豪. (2011). 探討服務品質與顧客滿意度對顧客忠誠度的影響-以信任及關係承諾為中介變數. 商管科技季刊, 12(3), 231-262.
鄭安倫. (2017). 金融科技之互聯網網路金融商機.
張弘一. (2017). 理財機器人的崛起對於財富管理之銀行理財專員的影響 (Publication Number 2017年) 淡江大學].
丁珮珺. (2012). 銀行理財專員財富管理行為分析探討-以北部地區銀行為例 (Publication Number 2012年) 國立交通大學].
潘淑美. (2012). 美學勞務, 正面情緒對顧客價值之研究—以金融業理財理專為例


二、英文文獻

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control: From Cognition to Behavior (pp. 11-39). Springer.
Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12(2), 125-143.
Bagozzi, R. P., Gopinath, M., & Nyer, P. U. (1999). The role of emotions in marketing. Journal of The Academy of Marketing Science, 27(2), 184-206.
Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 1986(23-28), 2.
Barras, R. (1990). Interactive innovation in financial and business services: The vanguard of the service revolution. Research Policy, 19(3), 215-237.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 351-370.
Bitner, M. J. (1990). Evaluating service encounters: the effects of physical surroundings and employee responses. Journal of Marketing, 54(2), 69-82.
Bitner, M. J. (1992). Servicescapes: The impact of physical surroundings on customers and employees. Journal of Marketing, 56(2), 57-71.
Brady, M. K., & Cronin Jr, J. J. (2001). Some new thoughts on conceptualizing perceived service quality: a hierarchical approach. Journal of Marketing, 65(3), 34-49.
Brenner, L., Meyll, T., Stolper, O., & Walter, A. (2020). Consumer fraud victimization and financial well-being. Journal of Economic Psychology, 76, 102243.
Capa, R. L., Audiffren, M., & Ragot, S. (2008). The interactive effect of achievement motivation and task difficulty on mental effort. International Journal of Psychophysiology, 70(2), 144-150.
Chen, S., & Granitz, N. (2012). Adoption, rejection, or convergence: Consumer attitudes toward book digitization. Journal of Business Research, 65(8), 1219-1225.
Crosby, L. A., Evans, K. R., & Cowles, D. (1990). Relationship quality in services selling: an interpersonal influence perspective. Journal of Marketing, 54(3), 68-81.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Eagly, A. H., & Chaiken, S. (1993). The Psychology of Attitudes. Harcourt brace Jovanovich college publishers.
Gerard, P., & Cunningham, J. B. (2001). Singapore undergraduates: How they choose which bank to patronize. Intl. J. of Bank Marketing, 19(3), 104-114.
Gounaris, S. P. (2005). Trust and commitment influences on customer retention: insights from business-to-business services. Journal of Business Research, 58(2), 126-140.
Grönroos, C. (1984). A service quality model and its marketing implications. European Journal of Marketing, 18(4), 36-44.
Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169.
Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45(1-3), 73-93.
Humphreys, M. S., & Revelle, W. (1984). Personality, motivation, and performance: a theory of the relationship between individual differences and information processing. Psychological Review, 91(2), 153.
Jones, G. R., & George, J. M. (1998). The experience and evolution of trust: Implications for cooperation and teamwork. Academy of Management Review, 23(3), 531-546.
Kettinger, W. J., & Lee, C. C. (1994). Perceived service quality and user satisfaction with the information services function. Decision Sciences, 25(5‐6), 737-766.
Kim, H.-Y., & McGill, A. L. (2018). Minions for the rich? Financial status changes how consumers see products with anthropomorphic features. Journal of Consumer Research, 45(2), 429-450.
Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46(8), 819.
Lazarus, R. S. (1991). Emotion and Adaptation. Oxford University Press.
Lee, J., & Cho, J. (2005). Consumers’ use of information intermediaries and the impact on their information search behavior in the financial market. Journal of Consumer Affairs, 39(1), 95-120.
Lu, L., Cai, R., & Gursoy, D. (2019). Developing and validating a service robot integration willingness scale. International Journal of Hospitality Management, 80, 36-51.
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709-734.
Mittal, V., & Kamakura, W. A. (2001). Satisfaction, repurchase intent, and repurchase behavior: Investigating the moderating effect of customer characteristics. Journal of Marketing Research, 38(1), 131-142.
Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of Marketing, 58(3), 20-38.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469.
Oliver, R. L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of Consumer Research, 20(3), 418-430.
Oliver, R. L. (2014). Satisfaction: A Behavioral Perspective on the Consumer: A Behavioral Perspective on the Consumer. Routledge.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perc. Journal of Retailing, 64(1), 12.
Peppers, D., & Rogers, M. (1997). Enterprise one to one: Tools for competing in the interactive age. (No Title).
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 125-143.
Van Doorn, J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo arigato Mr. Roboto: Emergence of automated social presence in organizational frontlines and customers’ service experiences. Journal of Service Research, 20(1), 43-58.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 157-178.
Watson, L., & Spence, M. T. (2007). Causes and consequences of emotions on consumer behaviour: A review and integrative cognitive appraisal theory. European Journal of Marketing, 41(5/6), 487-511.
Yap, K. B., & Sweeney, J. C. (2007). Zone‐of‐tolerance moderates the service quality‐outcome relationship. Journal of Services Marketing, 21(2), 137-148.
Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top