中文文獻
1.內政部(2017),第十次國民生命表函數定義及編算方法,下載網址: https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZS9zaXRlX25vZGVfZmlsZS82MDM0L%2besrOWNgeasoeWci%2bawkeeUn%2bWRveihqOWHveaVuOWumue%2bqeWPiue3qOeul%2baWueazlS5wZGY%3d&n=56ys5Y2B5qyh5ZyL5rCR55Sf5ZG96KGo5Ye95pW45a6a576p5Y%2bK57eo566X5pa55rOVLnBkZg%3d%3d,查詢時間:2024年6月1日。
2.內政部(2023),簡易生命表函數定義及編算方法,下載網址: https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvT2xkRmlsZS9zaXRlX25vZGVfZmlsZS81OTg4L21ldGhvcmQucGRm&n=bWV0aG9yZC5wZGY%3d,查詢時間:2024年6月1日。
3.林開煥(2017),生命統計學,台灣中華書局。
4.陳柏仁(2020),台灣壽險業經驗資料的死亡率模型與死亡風險資本分析,東吳大學財務工程與精算數學系碩士論文。5.陳淑娟、莊聲和、李佩鏵(2013),Solvency II 內部模型架構下長壽風險對於年金保險資本需求探討,壽險管理,26卷,49–72。
6.黃泓智、林家玉、余清祥(2004),癌症醫療費用之推估:馬可夫鏈模型之應用,保險專刊,20卷,29–51。
英文文獻
1.Bernoulli, D. (1760). Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir. Mémoires de Mathématique et de Physique, tirés des registres de l’Académie Royale des Sciences de l’année, 1-45.
2.Brouhns, N., Denuit, M., & Vermunt, J. K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics, 31(3), 373–393.
3.Crisafulli, M. (2024). A Solvency II Partial Internal Model Considering Reinsurance and Counterparty Default Risk. Journal of Risk and Financial Management, 17(4), 148.
4.Daw, R. H. (1979). Smallpox and the double decrement table: a piece of actuarial prehistory. Journal of the Institute of Actuaries, 106(3), 299–318.
5.Haberman, S., & Pitacco, E. (1999). Actuarial models for disability insurance. Chapman & Hall.
6.Haberman, S. (2005). Actuarial methods. Encyclopedia of Biostatistics, 1.
7.IAIS. (2019). Level 1 Document for ICS Version 2.0 for the monitoring period .Retrieved from https://www.iaisweb.org/uploads/2022/01/191120-Level-1-Document-for-ICS-Version-2.0-for-the-monitoring-period1.pdf, search date: 06/01/2024.
8.IAIS. (2019). Insurance Core Principles and Common Framework for the Supervision of Internationally Active Insurance Groups. Retrieved from https://www.iaisweb.org/uploads/2022/01/191115-IAIS-ICPs-and-ComFrame-adopted-in-November-2019.pdf, search date: 06/01/2024.
9.IAIS. (2020). Level 2 Document for ICS Version 2.0 for the monitoring period . Retrieved from https://www.iaisweb.org/uploads/2022/01/200313-Level-2-Document-for-ICS-Version-2.0-for-the-monitoring-period.pdf, search date: 06/01/2024.
10.IAIS. (2023a). Public 2023 ICS Data Collection Technical Specifications – Part 1. Retrieved from https://www.iaisweb.org/uploads/2023/06/Public-2023-ICS-Data-Collection-Technical-Specifications-Part-1.pdf, search date: 06/01/2024.
11.IAIS. (2023b). Public 2023 ICS Data Collection Technical Specifications – Part 2. Retrieved from https://www.iaisweb.org/uploads/2023/06/Public-2023-ICS-Data-Collection-Technical-Specifications-Part-2.pdf, search date: 06/01/2024.
12.Lee, R. (2000). The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications. North American Actuarial Journal, 4(1), 80–91.
13.Lee, R. D., & Carter, L. R. (1992). Modeling and Forecasting U. S. Mortality. Journal of the American Statistical Association, 87(419), 659–671.
14.Olivieri, A., & Pitacco, E. (2009). Stochastic Mortality: The Impact on Target Capital. ASTIN Bulletin, 39(2), 541–563.
15.Pasaribu, U. S., Husniah, H., Sari, RR. K. N., & Yanti, A. R. (2019). Pricing Critical Illness Insurance Premiums Using Multiple State Continous Markov Chain Model. Journal of Physics: Conference Series, 1366, 012112.
16.Pasquier, D., & Gustav, L. (1912). Mathematische Theorie der Invaliditätsversicherung. Zeitschrift für Schweizerische Statistik und Volkswirtschaft, 48.
17.Pitacco, E. (1995). Actuarial models for pricing disability benefits: Towards a unifying approach. Insurance: Mathematics and Economics, 16(1), 39–62.
18.Renshaw, A. E., & Haberman, S. (2003). Lee–Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255–272.
19.Seal, H. L. (1977). Studies in the History of Probability and Statistics. XXXV Multiple Decrements or Competing Risks. Biometrika, 64(3), 429.