1.方柏超(2021年5月14日)。台灣產業發展與政府補助的相關性。myMKC管理知識中心。https://mymkc.com/article/content/24457
2.王瑜甄、吳軒萍、吳威廷、黃美文、詹浩玥、郭文嘉、鍾榮哲(2021)。後疫情時代製造業數位轉型。逢甲大學國際經營與貿易學系。
3.王禎祥(2021)。應用機器學習回歸模型於成衣製造業銷售預測-以T公司為例〔未出版之碩士論文〕。國立中央大學資訊管理學系。4.呂駿彬(2020)。台灣扣件產業發展策略之探究〔未出版之博士論文〕。國立成功大學政治學系研究所。5.宋文龍(2023)。風雨70年台灣扣件產業的軟實力。產業動態惠達雜誌,201,94-96。
6.林顯明(2019)。臺灣螺絲帽(扣件)產業發展與轉型之政治經濟分析。國會季刊,47(2),49-82。
7.武小平、張強、趙芳、焦琳(2021)。基於 BERT 的心血管醫療指南實體關係抽取方法。電腦應用,41(1),145-149。
8.況國安(2015)。台灣扣件產業轉型高值化之探討〔未出版之碩士論文〕國立中正大學高階主管管理。9.紀翔瀛(2021年9月29日)。2020年我國扣件產業回顧與展望。工商時報。https://readers.ctee.com.tw/cm/20210929/a77asa7/1147478/share
10.紀翔瀛(2022)。2022上半年台灣扣件業的回顧與展望。惠達雜誌產業報導,196,62-65。https://fastener-world.com.tw/data/pdf_download/FW_196_C_62.pdf
11.紀翔瀛(2023年02月17日)。2022年第四季及全年我國扣件產業回顧與展望。ITIS智網。
https://www.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=356815962&type=netreport
12.徐佩吟(2021)。台灣扣件產業國際競爭力分析〔未出版之碩士論文〕。國立屏東大學國際貿易學系。13.高宏宇(2023)。多模態語言強化模型之訊息科技前瞻技術研究(I)〔未出版之碩士論文〕。國立成功大學資訊工程學系。
14.陳宇勛(2020)。建構季節性產品之銷售預測模式:以18天生啤酒為例〔未出版之碩士論文〕。國立交通大學管理學院運輸物流學系。15.馮世達(2007)。台灣螺絲螺帽產業競爭力分析〔未出版之碩士論文〕國立成功大學資源工程學系。16.廖邵瑋(2022)。自然語言處理技術應用於科技華語詞彙分析〔未出版之碩士論文〕國立臺灣師範大學華語文教學系。17.遠見雜誌(2021)。小螺絲螞蟻雄兵衝上全球第三大。遠見雜誌出版。https://event.gvm.com.tw/anniversary/35/feature/hardware.html
18.劉和財(2010)。台灣螺絲扣件產業成功關鍵因素之探討〔未出版之碩士論文〕國立高雄應用科技大學高階經營管理研究所。19.劉麗惠(2017)。從「螺絲王國」到「醫療矽谷」台灣扣件產業轉型看見傳產新力量。貿易雜誌電子報,307,48-51。
http://www.ieatpe.org.tw/magazine/ebook307/b3.pdf
20.蔡政融(2021)。基於深度學習+BERT與強化學習進行FAANG股價預測。〔未出版之碩士論文〕國立政治大學資訊管理學系。21.賴敏軒(2011)。實證探究多種鑑別式語言模型於語音辨識之研究〔未出版之碩士論文〕國立臺灣師範大學資訊工程研究所。22.竇忠先(2007)。以策略管理觀點設計之銷售預測輔助系統-營業單位之銷售目標訂定。
23.黨建武、從筱卿(2021)。基於CNN 和GRU 的混合股指預測模型研究。電腦工程與應用,57(16)。
24.Huateng, O(2023)。AI預測力量:未來的商業與科學洞察:如何利用人工智能技術驅動資料分析與預測。Huateng Ou Press。
25.Adams, S., & Beling, P. A. (2019). A survey of feature selection methods for Gaussian mixture models and hidden Markov models. Artificial Intelligence Review, 52, 1739-1779.
26.Ashrafzadeh, M., Taheri, H. M., Gharehgozlou, M., & Zolfani, S. H. (2023). Clustering-based return prediction model for stock pre-selection in portfolio optimization using PSO-CNN+ MVF. Journal of King Saud University - Computer and Information Sciences, 35(9), 101737.
27.Bangi, M. S. F., & Kwon, J. S. I. (2023). Deep hybrid model-based predictive control with guarantees on domain of applicability. AIChE Journal, 69(5), e18012.
28.Bannour, N., Ghannay, S., Névéol, A., & Ligozat, A.L. (2021). Evaluating the carbon footprint of NLP methods: A survey and analysis of existing tools. In Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing, 11-21.
29.Chen, Y., Wu, J., & Wu, Z. (2022). China’s commercial bank stock price prediction using a novel K-means-LSTM hybrid approach. Expert Systems with Applications, 202(C), 117370.
30.Dehghani, A., Moazam, H. M. Z. H., Mortazavizadeh, F., Ranjbar, V., Mirzaei, M., Mortezavi, S., Ng, J. L., & Dehghani, A. (2023). Comparative evaluation of LSTM, CNN, and ConvLSTM for hourly short-term streamflow forecasting using deep learning approaches. Ecological Informatics, 75, 102119.
31.DiPietro, R., & Hager, G. D. (2020). Deep learning: RNNs and LSTM. In Handbook of medical image computing and computer assisted intervention, 503-519 Elsevier.
32.Duchessi, P., & Lauría, E. J. (2013). Decision tree models for profiling ski resorts’ promotional and advertising strategies and the impact on sales. Expert Systems with Applications, 40(15), 5822-5829.
33.Elsaraiti, M., Ali, G., Musbah, H., Merabet, A., & Little, T. (2021). Time series analysis of electricity consumption forecasting using ARIMA model. In 2021 IEEE Green Technologies Conference, 259-262. IEEE.
34.Fan, W. (2022). Prediction of monetary fund based on ARIMA model. Procedia computer science, 208, 277-285.
35.Fang, W., Chen, Y., & Xue, Q. (2021). Survey on research of RNN-based spatio-temporal sequence prediction algorithms. Journal on Big Data,3(3), 97-110.
36.GeeksforGeeks. (2024, April 30). Top 20 LLM (Large Language Model) Models. GeeksforGeeks.
37.Gamboa, J. C. B. (2017). Deep learning for time-series analysis. arXiv preprint arXiv:1701.01887.
38.Gratton, L. (2021). How to do hybrid right. Harvard Business Review, 99(3), 65-74.
39.Hansun, S. (2013). A new approach of moving average method in time series analysis. 2013 Conference on New Media Studies (CoNMedia), 1-4.
40.Hoefler, R., Tiguman, G. M. B., Galvão, T. F., Ribeiro-Vaz, I., & Silva, M. T. (2023). Trends in sales of antidepressants in Brazil from 2014 to 2020: A time trend analysis with joinpoint regression. Journal of Affective Disorders, 323, 213-218.
41.Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., de Las Casas, D., Hendricks, L. A., Welbl, J., & Clark, A. (2022). An empirical analysis of compute-optimal large language model training. Advances in Neural Information Processing Systems, 35, 30016-30030.
42.Joseph, R. V., Mohanty, A., Tyagi, S., Mishra, S., Satapathy, S. K., & Mohanty, S. N. (2022). A hybrid deep learning framework with CNN and Bi-directional LSTM for store item demand forecasting. Computers & Electrical Engineering, 103(C), 14.
43.Kobiela, D., Krefta, D., Król, W., & Weichbroth, P. (2022). ARIMA vs LSTM on NASDAQ stock exchange data. Procedia Computer Science, 207, 3836-3845.
44.Kolkova, A. (2020). The Application of Forecasting Sales of Services to Increase Business Competitiveness. Journal of Competitiveness, 12(2), 90-105.
45.Liddy, E. D. (2001). Natural language processing. In Encyclopedia of Library and Information Science.
46.Lin, J., Nogueira, R., & Yates, A. (2022). Pretrained transformers for text ranking: Bert and beyond. Springer Nature.
47.Lin, Y. F., Cheng, C. S., & Chen, Y. C. (2021, September). Sales forecasting using ANNs or RNNs-A case study of freeway service station in Taiwan. In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 1-2. IEEE.
48.Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
49.Luna, J. C. (2023). 8 Top Open-Source LLMs for 2024 and Their Uses.
https://www.datacamp.com/blog/top-open-source-llms
50.Moghar, A., & Hamiche, M. (2020). Stock market prediction using LSTM recurrent neural network. Procedia computer science, 170, 1168-1173.
51.Muthukumar, P., & Zhong, J. (2021). A stochastic time series model for predicting financial trends using nlp. arXiv preprint arXiv:2102.01290.
52.Nirmala, V. W., Harjadi, D., & Awaluddin, R. (2021). Sales forecasting by using exponential smoothing method and trend method to optimize product sales in pt. zamrud bumi indonesia during the covid-19 pandemic. International Journal of Engineering, Science and Information Technology, 1(4), 59-64.
53.Palkar, A., Deshpande, M., Kalekar, S., & Jaswal, S. (2020). Demand forecasting in retail industry for liquor consumption using LSTM. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 521-525.
54.Panggabean, S., Sihombing, P. R., Dewi, K. H. S., Pramartha, I. N. B., Junaidy, J., & Syaharuddin, S.(2021). Simulasi Exponential Moving Avarage dan Single Exponential Smoothing: Sebuah Perbandingan Akurasi Metode Peramalan. Jurnal Pemikiran dan Penelitian Pendidikan Matematika (JP3M), 4(1), 1-10.
55.Sharma, M., Sharma, D., Burle, R., Patil, P., Joge, I., & Puri, C. (2024). Predicting house price model: A comprehensive analysis with random forest and decision tree method. 2024 3rd International Conference for Innovation in Technology (INOCON), 1-6.
56.Shih, S.-Y., Sun, F.-K., & Lee, H.-y. (2019). Temporal pattern attention for multivariate time series forecasting. Machine Learning, 108, 1421-1441.
57.Shumway, R. H., Stoffer, D. S., Shumway, R. H., & Stoffer, D. S. (2017). ARIMA models. Time series analysis and its applications: with R examples, 75-163.
58.Slater, L. J., Arnal, L., Boucher, M.-A., Chang, A. Y.-Y., Moulds, S., Murphy, C., Nearing, G., Shalev, G., Shen, C., & Speight, L. (2023). Hybrid forecasting: blending climate predictions with AI models. Hydrology and earth system sciences, 27(9), 1865-1889.
59.Suryana, N., & Basari, A. (2020). Generate contextual insight of product review using deep LSTM and word embedding. Journal of Physics: Conference Series, 1577(1), 012006. IOP Publishing.
60.Swari, M., Qusyairi, M., Mandyartha, E., & Wahanani, H. (2021). Business intelligence system using simple moving average method (Case study: Sales medical equipment at PT. Semangat Sejahtera Bersama). Journal of Physics: Conference Series, 1899(1), 012121. IOP Publishing.
61.Ullah, K., & Qasim, M. (2020). Google stock prices prediction using deep learning. 2020 IEEE 10th International Conference on System Engineering and Technology (ICSET), 108-113. IEEE.
62.Wang, X., & Zhang, Z. (2021, June 16). Must-Read Papers on Pre-Trained Language Models (PLMs). Github. https://github.com/thunlp/PLMpapers?tab=readme-ov-file.
63.Xie, H. H., Li, C., Ding, N., & Gong, C. (2021). Walmart sale forecasting model based on LSTM and LightGBM. 2021 2nd International Conference on Education, Knowledge and Information Management (ICEKIM), 366-369. IEEE.
64.Yang, S., Navarathna, P., Ghosh, S., & Bequette, B. W. (2020). Hybrid modeling in the era of smart manufacturing. Computers & Chemical Engineering, 140, 106874.
65.Yang, Y., Fan, C., & Xiong, H. (2022). A novel general-purpose hybrid model for time series forecasting. Applied Intelligence, 52(2), 2212-2223.
66.Zaremba, A., & Demir, E. (2023). ChatGPT: Unlocking the future of NLP in finance. Modern Finance, 1(1), 93-98.
67.Zhong, H., Xiao, C., Tu, C., Zhang, T., Liu, Z., & Sun, M. (2020). How does NLP benefit legal system: A summary of legal artificial intelligence. arXiv preprint arXiv:2004.12158.
68.Zhu, H. (2021). A deep learning based hybrid model for sales prediction of e-commerce with sentiment analysis. 2021 2nd International Conference on Computing and Data Science (CDS), 493-497. IEEE.