跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐佳鑫
研究生(外文):OU, JIA-XIN
論文名稱:應用於壓電微掃描面鏡致動平台之銅金屬/BCTSH無鉛積層共燒技術開發
論文名稱(外文):Development of Copper Metal/BCTSH Lead-Free Multilayer Co-Fired Technology for Piezoelectric Micro Scanning Mirror Actuation Platform Applications
指導教授:鄭建民鄭建民引用關係朱聖緣朱聖緣引用關係
指導教授(外文):CHENG, CHIEN-MINCHU, SHENG-YUAN
口試委員:鄭建民朱聖緣洪群雄陳開煌蔡震哲
口試委員(外文):CHENG, CHIEN-MINCHU, SHENG-YUANHONG, CHENG-SHONGCHEN, KAI-HUANGTSAI, CHENG-CHE
口試日期:2024-07-17
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:100
中文關鍵詞:無鉛壓電陶瓷卑金屬共燒熱電效應微掃描鏡
外文關鍵詞:Lead-free Piezoelectric CeramicsBase-Metal Co-FiringElectrocaloric EffectMicro Scanning Mirror
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用固態合成法合成製備出(Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3無鉛壓電陶瓷,並摻雜不同比例的ZnO與Fe2O3來降低其燒結溫度並有效提升在還原氣氛中燒結之壓電特性,分別探討在空氣中與還原氣氛中燒結對無鉛壓電陶瓷的各項電特性(壓電、鐵電、介電以及電熱),再以刮刀成型及網印製程技術製備成生胚陶瓷薄帶,再與卑金屬銅電極在還原氣氛中進行共燒製作出積層壓電陶瓷,探討內電極層數對其壓電特性之影響,並將其應用於壓電微掃描面鏡致動平台,且透過ANSYS模擬得出元件之共振頻率及驅動電壓。
BCTSH在摻雜0.20 wt%ZnO並在燒結溫度1080°C下可以得到最佳特性如下: d33 = 328 pC/N,kp = 0.437,Qm = 359。後續再摻雜0.1 wt%Fe2O3並在空氣中燒結溫度1000°C下可以得到最佳特性如下:d33 = 335 pC/N,kp = 0.40,Qm = 337;在還原氣氛中(PO2 = 10-12 atm)燒結溫度1000°C下可以得到最佳電特性與電熱特性如下:d33 = 364 pC/N,kp = 0.35,Qm = 339,ΔT = 0.612 K,ΔT/ΔE = 0.204 Kmm/kV。與銅電極在燒結溫度1000°C,PO2 = 10-12 atm下進行還原氣氛共燒,堆疊4層下,可得到d33 = 1698 pC/N,kp = 0.19,Qm = 209之積層壓電陶瓷,可應用於目前電子產品中的積層致動器。
以ANSYS模擬後可得出當共振頻率為297.8 Hz時,驅動電壓為197.6 V,振動位移量為1.53 μm。

關鍵字:無鉛壓電陶瓷、卑金屬共燒、熱電效應、微掃描鏡

In this study, (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0.035)O3 lead-free piezoelectric ceramics were synthesized by the solid-state method. Through doping with varying proportions of ZnO and Fe2O3, the sintering temperatures are decreased and piezoelectric properties in a reducing atmosphere are effectively enhanced. For sintering in air atmosphere and in reducing atmosphere, the electrical properties (piezoelectric, ferroelectric, dielectric and thermoelectric) of lead-free piezoelectric ceramics were investigated, respectively. By the doctor blade and screen-printing processes, the ceramics green sheets are prepared and then were co-fired with a base metal copper electrode in a reducing atmosphere to form multilayer piezoelectric ceramics. In addition, the inference of the number of internal electrode layers was also investigated. These ceramics will be utilized to construct a platform for a stacked ceramic actuator which is combined with a scanning mirror. Finally, the resonance frequency and driving voltage were simulated by the ANSYS simulation software.
For the 0.2wt%ZnO-doped BCTSH and sintered at 1080C in air, we can obtain the best characteristic: d33 = 328 pC/N, kp = 0.437, Qm = 359. And after further doping with 0.1wt%Fe2O3 and sintered in air at 1000C, we can obtain the best characteristic: d33 = 335 pC/N, kp = 0.40, Qm = 337. Furthermore, for sintered in a reducing atmosphere (PO2 = 10-12 atm) at 1000C, it can be obtained the best electric and electrocaloric characteristics of d33 = 364 pC/N, kp = 0.35, Qm = 339, ΔT = 0.612 K, and ΔT/ΔE = 0.204 K·mm/kV. For the laminated piezoelectric ceramics with 4 layers of copper electrodes and co-fired in a reducing atmosphere (PO2 = 10-12 atm) at 1000C, it can be obtained the best characteristics of d33 = 1698 pC/N, kp = 0.19, and Qm = 209, which can be applied to the multilayer actuators for the modern electronic products.
As the resonance frequency is 297.8 Hz, we used the ANSYS simulation software to simulate and the simulated results were: vibration displacement is 1.53 μm and drive voltage is 197.6 V.

Keywords: Lead-free Piezoelectric Ceramics, Base-Metal Co-Firing, Electrocaloric Effect, Micro Scanning Mirror

摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
1 第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 論文架構 3
2 第二章 基礎理論與文獻回顧 4
2.1 壓電材料 4
2.1.1 壓電效應原理 4
2.1.2 壓電諧振體 6
2.1.3 壓電單晶體 7
2.1.4 壓電多晶體 7
2.1.5 壓電複合材料 8
2.2 壓電晶體結構 8
2.2.1 晶格與晶系 8
2.2.2 壓電晶體起源 10
2.2.3 容忍因子 11
2.3 壓電特性參數 12
2.3.1 壓電材料操作方向與模式 12
2.3.2 壓電方程式 13
2.4 介電效應 16
2.4.1 介電理論 16
2.4.2 介電損耗 17
2.5 鐵電效應 20
2.5.1 鐵電遲滯曲線 20
2.6 電熱效應 21
2.7 鈦酸鋇基無鉛壓電材料 24
2.8 積層壓電陶瓷 25
2.9 微型掃描鏡 27
2.9.1 光達系統介紹 27
2.9.2 壓電式致動之掃描微鏡 31
3 第三章 實驗步驟及量測 32
3.1 壓電陶瓷體原料之製作 32
3.1.1 壓電陶瓷粉末的製備 32
3.1.2 壓電陶瓷塊材的製程 32
3.2 積層壓電陶瓷之製程 34
3.2.1 漿料配置 34
3.2.2 生胚薄帶之製程 34
3.2.3 網印製程(Screen printing) 35
3.2.4 切割成型與熱水均壓 35
3.2.5 去黏劑(Binder burn out)及燒結(Sintering) 36
3.3 壓電陶瓷體特性量測及分析 39
3.3.1 密度量測 39
3.3.2 XRD分析量測 39
3.3.3 變溫介電量測 40
3.3.4 SEM分析 41
3.3.5 介電、壓電及鐵電電性量測 42
3.3.6 壓電溫度穩定性 47
4 第四章 實驗結果與討論 48
4.1 空氣中燒結之BCTSH+3%MnCO3+3%LiF+x wt%ZnO 49
4.1.1 空氣中燒結x wt%ZnO之XRD、SEM、晶粒尺寸分布與密度 49
4.1.2 空氣中燒結x wt%ZnO SEM、晶粒尺寸與密度 51
4.1.3 空氣中燒結x wt%ZnO之介電、壓電及鐵電特性 52
4.2 空氣中燒結之BCTSH+3%MnCO3+3%LiF+0.2 wt%ZnO+x wt% Fe2O3 56
4.2.1 空氣中燒結x wt% Fe2O3之XRD分析 56
4.2.2 空氣中燒結x wt% Fe2O3之SEM、晶粒尺寸與密度 57
4.2.3 空氣中燒結x wt% Fe2O3之介電、壓電及鐵電特性 58
4.3 還原氣氛燒結之BCTSH+3%MnCO3+3%LiF+0.2 wt%ZnO+x wt% Fe2O3 62
4.3.1 還原氣氛中燒結x wt% Fe2O3 之XRD 62
4.3.2 還原氣氛中燒結x wt% Fe2O3 之SEM 63
4.3.3 還原氣氛中燒結x wt% Fe2O3 之介電、壓電及鐵電特性 65
4.3.4 還原氣氛中燒結x wt% Fe2O3 之電熱特性 68
4.3.5 還原氣氛中燒結x wt% Fe2O3 之Cole-cole plot與活化能分析 72
4.4 還原氣氛燒結並改變燒結溫度之BCTSH+3%MnCO3+3%LiF+0.2 wt%ZnO+0.10 wt% Fe2O3 79
4.4.1 還原氣氛中改變燒結溫度BCTSH+3%MnCO3+3%LiF+0.2 wt%ZnO+0.10 wt% Fe2O3之XRD 79
4.4.2 還原氣氛中改變燒結溫度BCTSH+3%MnCO3+3%LiF+0.20 wt%ZnO+0.10 wt% Fe2O3之SEM 81
4.4.3 還原氣氛中改變燒結溫度BCTSH+3%MnCO3+3%LiF+0.2 wt%ZnO+0.10 wt% Fe2O3之介電、壓電及鐵電特性 83
4.5 銅金屬積層BCTSH+3%MnCO3+3%LiF+0.2 wt%ZnO+0.10 wt% Fe2O3 陶瓷在PO2=10-12atm下共燒 86
4.5.1 積層壓電BCTSH-MLZF陶瓷之XRD與SEM分析 86
4.5.2 積層壓電BCTSH-MLZF陶瓷改變銅電極層數之壓電、介電、鐵電特性 87
4.6 壓電陶瓷致動器平台元件模擬及設計 90
4.6.1 積層壓電致動器微鏡之ANSYS模擬及設計分析 90
5 第五章 結論與未來展望 93
5.1 結論 93
5.2 未來展望 94
參考文獻 95

[1]J. Curie and P. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880.
[2]W. G. Hankel, "Über die Aktino-und Piezoelektrischen Eigenschaften des Bergkrystalles und ihre Beziehung zu den Thermoelektrischen," (No Title), 1881.
[3]S. Roberts, "Dielectric and piezoelectric properties of barium titanate," Physical Review, vol. 71, no. 12, p. 890, 1947.
[4]B. Jaffe, R. Roth, and S. Marzullo, "Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate," Journal of research of the National Bureau of Standards, vol. 55, no. 5, pp. 239-254, 1955.
[5]王永龄, 功能陶瓷性能与应用. 科学出版社, 2003.
[6]A. Gubkin, "The ferroelectric properties of strontium-bismuth titanate," Soviet Physics-Solid State, vol. 2, no. 12, pp. 2732-2737, 1961.
[7]朱建國, 電子與光電材料. 北京國防工業出版社, 2007.
[8]吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
[9]F. Seitz, D. Turnbull, and H. Ehrenreich, Solid state physics. Academic Press, 1968.
[10]W. Kanzig, "Solid State Physics, vol. 4, F," Seitz and D. Turnbull, Eds. New York: Academic, pp. 1-197, 1957.
[11]B. Jaffe, W. R. Cook, and H. Jaffe, "The piezoelectric effect in ceramics," Piezoelectric ceramics, pp. 7-21, 1971.
[12]邱碧秀, 電子陶瓷材料. 全欣科技圖書, 1997.
[13]A. M. Badr, H. A. Elshaikh, and I. M. Ashraf, "Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals," Journal of Modern Physics, vol. 2011, 2011.
[14]L. Jin, F. Li, and S. Zhang, "Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures," Journal of the American Ceramic Society, vol. 97, no. 1, pp. 1-27, 2014.
[15]Z. Kutnjak, B. Rožič, and R. Pirc, "Electrocaloric effect: theory, measurements, and applications," Wiley encyclopedia of electrical and electronics engineering, pp. 1-19, 1999.
[16]T. Correia and Q. Zhang, "Electrocaloric materials," New Generation of Coolers, vol. 34, 2014.
[17]Y. Meng, J. Pu, and Q. Pei, "Electrocaloric cooling over high device temperature span," Joule, vol. 5, no. 4, pp. 780-793, 2021.
[18]Y. Ying, D. Hongliang, Y. Zetian, J. Li, and Q. Shaobo, "Electrocaloric effect of lead-free bulk ceramics: current status and challenges," Journal of Inorganic Materials, vol. 35, no. 6, pp. 633-646, 2020.
[19]A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons, 2003.
[20]X. Wang et al., "Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics," Applied Physics Letters, vol. 110, no. 6, 2017.
[21]J. Q. Zhou and K. P. Chen, "Low Temperature Sintering of (Ba0. 98Ca0. 02)(Sn0. 04Ti0. 96) O3 Ceramics Using CuO-B2O3 as a Sintering Additive," Key Engineering Materials, vol. 602, pp. 813-816, 2014.
[22]Q. Chen et al., "Low temperature sintering of Ba 0.91 Ca 0.09 Ti 0.916 Sn 0.084 O 3 lead-free piezoelectric ceramics with the additives of ZnO and MnO 2," Journal of Electroceramics, vol. 32, pp. 175-179, 2014.
[23]L. Zhao, B.-P. Zhang, P.-F. Zhou, L.-F. Zhu, and J.-F. Li, "Effect of Li2O addition on sintering and piezoelectric properties of (Ba, Ca)(Ti, Sn) O3 lead-free piezoceramics," Journal of the European Ceramic Society, vol. 35, no. 2, pp. 533-540, 2015.
[24]B. Wu, D. Xiao, J. Wu, Q. Gou, and J. Zhu, "Microstructure and electrical properties of (Ba 0.98 Ca 0.02)(Ti 0.94 Sn 0.06) O 3–x wt% ZnO lead-free piezoelectric ceramics sintered at lower temperature," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 2323-2328, 2015.
[25]P.-F. Zhou, B.-P. Zhang, L. Zhao, and L.-F. Zhu, "Effect of LiF addition on phase structure and piezoelectric properties of (Ba, Ca)(Ti, Sn) O3 ceramics sintered at low temperature," Ceramics International, vol. 41, no. 3, pp. 4035-4041, 2015.
[26]P. Redhu, P. Sharma, A. Hooda, A. Singh, G. Sharma, and R. Punia, "Role of charge compensation mechanism and defect dipoles on properties of Mn doped BCT ceramics," Ceramics International, vol. 47, no. 8, pp. 11491-11505, 2021.
[27]L. Zhang et al., "High-temperature stability of Ba0. 99Ca0. 01Zr0. 02Ti0. 98O3-doped LiTaO3 lead-free ceramics," Journal of Materials Science: Materials in Electronics, vol. 33, no. 8, pp. 5878-5885, 2022.
[28]W. Groen, K. Prijs, and S. Saeed, "Dependence of piezoelectric properties on layer thickness for multilayer actuators," Integrated Ferroelectrics, vol. 115, no. 1, pp. 132-141, 2010.
[29]S.-J. Chae et al., "Superior piezoelectric properties of lead-free thick-films and their application to alternative multilayer actuator," Journal of Alloys and Compounds, vol. 834, p. 155079, 2020.
[30]Z. Dong, P. Zhao, Z. Cen, and X. Wang, "KNN‐based piezoelectric ceramic multilayer actuators with Ni internal electrodes," Journal of the American Ceramic Society, vol. 106, no. 5, pp. 2953-2962, 2023.
[31]X. Hu, T. Cao, B. Wang, Z. Wen, K. Yan, and D. Wu, "A low-cost multilayer piezoelectric actuator for ultrasonic motor stator driving fabricated by a low-temperature co-fired ceramic process," Ceramics International, vol. 49, no. 4, pp. 6119-6124, 2023.
[32]Y. Huan et al., "High-performance (K, Na) NbO 3-based multilayer piezoelectric ceramic actuators with nickel inner electrodes," Journal of Advanced Ceramics, vol. 12, no. 6, pp. 1228-1237, 2023.
[33]N. Van Dinh, Y.-g. Ha, and G.-W. Kim, "A universal control system for self-driving car towards urban challenges," in 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020: IEEE, pp. 452-454.
[34]T. Raj, F. Hanim Hashim, A. Baseri Huddin, M. F. Ibrahim, and A. Hussain, "A survey on LiDAR scanning mechanisms," Electronics, vol. 9, no. 5, p. 741, 2020.
[35]H. W. Yoo et al., "MEMS-based lidar for autonomous driving," e & i Elektrotechnik und Informationstechnik, 2018.
[36]P. F. McManamon et al., "Optical phased array technology," Proceedings of the IEEE, vol. 84, no. 2, pp. 268-298, 1996.
[37]C.-P. Hsu et al., "A review and perspective on optical phased array for automotive LiDAR," IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 1, pp. 1-16, 2020.
[38]P. F. McManamon, P. Banks, J. Beck, D. G. Fried, A. S. Huntington, and E. A. Watson, "Comparison of flash lidar detector options," Optical Engineering, vol. 56, no. 3, pp. 031223-031223, 2017.
[39]L. Ye, G. Zhang, and Z. You, "5 V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application," Sensors, vol. 17, no. 3, p. 521, 2017.
[40]曲遠方, 功能陶瓷材料. 曉園出版社, 2006.
[41]M. C. Yu, C. C. Tsai, C. S. Hong, Y. X. Zhang, G. H. Feng, and S. Y. Chu, "Effects of LiF on the properties of (Ba, Ca)(Ti, Sn, Hf) O3‐based multilayer ceramics co‐fired with Ni at reduced atmosphere," Journal of the American Ceramic Society, vol. 106, no. 2, pp. 1037-1049, 2023.
[42]W. Sakamoto, K. Noritake, H. Ichikawa, K. Hayashi, and T. Yogo, "Fabrication and properties of nonreducible lead-free piezoelectric Mn-doped (Ba, Ca) TiO3 ceramics," Ceramics International, vol. 43, pp. S166-S171, 2017.
[43]Y. Feng et al., "Defect engineering of lead-free piezoelectrics with high piezoelectric properties and temperature-stability," ACS Applied Materials & Interfaces, vol. 8, no. 14, pp. 9231-9241, 2016.
[44]T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, and Y. Liu, "Effect of CuO on the microstructure and electrical properties of Ba 0.85 Ca 0.15 Ti 0.90 Zr 0.10 O 3 piezoceramics," Journal of Materials Science, vol. 47, pp. 4612-4619, 2012.
[45]M. Zhu, L. Liu, Y. Hou, H. Wang, and H. Yan, "Microstructure and electrical properties of MnO‐doped (Na0. 5Bi0. 5) 0.92 Ba0. 08TiO3 lead‐free piezoceramics," Journal of the American Ceramic Society, vol. 90, no. 1, pp. 120-124, 2007.
[46]A. Watcharapasorn and S. Jiansirisomboon, "Grain growth kinetics in Dy-doped Bi0. 5Na0. 5TiO3 ceramics," Ceramics international, vol. 34, no. 4, pp. 769-772, 2008.
[47]H. Kishi et al., "Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3," Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1643-1647, 2001.
[48]H.-I. Hsiang, K.-Y. Lin, F.-S. Yen, and C.-Y. Hwang, "Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites," Journal of materials science, vol. 36, pp. 3809-3815, 2001.
[49]K. N. D. K. Muhsen, R. A. M. Osman, and M. S. Idris, "The effects of Ca, Zr and Sn substitutions into a ternary system of BaTiO 3–BaSnO 3–BaZrO 3 towards its dielectric and piezoelectric properties: a review," Journal of Materials Science: Materials in Electronics, vol. 32, pp. 12771-12783, 2021.
[50]Z. Zhao, X. Li, H. Ji, Y. Dai, and T. Li, "Microstructure and electrical properties in Zn-doped Ba0. 85Ca0. 15Ti0. 90Zr0. 10O3 piezoelectric ceramics," Journal of Alloys and Compounds, vol. 637, pp. 291-296, 2015.
[51]P. Hansen, D. Hennings, and H. Schreinemacher, "Dielectric properties of acceptor-doped (Ba, Ca)(Ti, Zr) O 3 ceramics," Journal of electroceramics, vol. 2, pp. 85-94, 1998.
[52]C. Muralidhar and P. Pillai, "Dielectric behaviour of barium titanate-polyvinylidene fluoride composites," Journal of materials science, vol. 23, pp. 1071-1076, 1988.
[53]Q. Lou, J. Zeng, Z. Man, L. Zheng, C. Park, and G. Li, "Effect of Ba: Ti on ferroelectric properties of LiF doped BaTiO 3 ceramics," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 6556-6563, 2019.
[54]P. Jarupoom, P. Jaita, D. R. Sweatman, A. Watcharapasorn, and G. Rujijanagul, "Enhancement of electrostrictive and magnetic performance with high energy storage efficiency in Fe2O3 nanoparticles-modified Ba (Zr0. 07Ti0. 93) O3 multiferroic ceramics," Materials Science and Engineering: B, vol. 277, p. 115579, 2022.
[55]B. Keswani et al., "Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca) TiO3 lead-free piezoelectric," Journal of Alloys and Compounds, vol. 712, pp. 320-333, 2017.
[56]P. Kumar, S. Sharma, O. Thakur, C. Prakash, and T. Goel, "Dielectric, piezoelectric and pyroelectric properties of PMN–PT (68: 32) system," Ceramics International, vol. 30, no. 4, pp. 585-589, 2004.
[57]H. N. H. Nakayama and H. K.-Y. H. Katayama-Yoshida, "Theoretical prediction of magnetic properties of Ba (Ti1-xMx) O3 (M= Sc, V, Cr, Mn, Fe, Co, Ni, Cu)," Japanese journal of applied physics, vol. 40, no. 12B, p. L1355, 2001.
[58]W. Peng, L. Li, S. Yu, P. Yang, and K. Xu, "Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere," Ceramics International, vol. 47, no. 20, pp. 29191-29196, 2021.
[59]A. Chawla, A. Singh, P. Babu, and M. Singh, "Magnetic ion oxidation state dependent magnetoelectric coupling strength in Fe doped BCT ceramics," RSC advances, vol. 10, no. 35, pp. 21019-21027, 2020.
[60]S. Lu et al., "Electrocaloric effect in lead-free 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic measured by direct and indirect methods," Ceramics International, vol. 44, no. 17, pp. 21950-21955, 2018.
[61]H. Du et al., "Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics via tape casting," Journal of Materials Chemistry C, vol. 7, no. 23, pp. 6860-6866, 2019.
[62]M. Miah, M. Khan, and A. A. Hossain, "Synthesis and enhancement of multiferroic properties of (x) Ba0. 95Sr0. 05TiO3–(1− x) BiFe0. 90Dy0. 10O3 ceramics," Journal of Magnetism and Magnetic Materials, vol. 397, pp. 39-50, 2016.
[63]H. Gong, X. Wang, S. Zhang, Z. Tian, and L. Li, "Electrical and reliability characteristics of Mn-doped nano BaTiO3-based ceramics for ultrathin multilayer ceramic capacitor application," Journal of Applied Physics, vol. 112, no. 11, 2012.
[64]U. Acevedo, R. Lopez-Noda, R. Breitwieser, F. Calderon, S. Ammar, and R. Valenzuela, "An impedance spectroscopy study of magnetodielectric coupling in BaTiO3-CoFe2O4 nanostructured multiferroics," AIP Advances, vol. 7, no. 5, 2017.
[65]A. Mahmood, A. Naeem, and Y. Iqbal, "Dielectric and impedance spectroscopic investigation of the Ba0. 3Sr0. 7Ti0. 873Zr0. 097Mn0. 03O3 ceramic system," Ceramics International, vol. 42, no. 4, pp. 4860-4865, 2016.
[66]M. K. Adak and D. Dhak, "Assessment of strong relaxation on BaTiO3 modified by Mn2+ and Pr3+, K+ at A− and B− site respectively," Materials Research Express, vol. 6, no. 12, p. 125082, 2019.
[67]L. Omari, R. Moubah, and M. Haddad, "Conductivity and electrical impedance of (BaTiO3) 0.95-(LaFeO3) 0.05 solid solutions," Materials Chemistry and Physics, vol. 199, pp. 138-143, 2017.
[68]W.-M. Zhong, X.-G. Tang, Q.-X. Liu, Y.-P. Jiang, W.-H. Li, and J.-L. Yue, "Resistive switching effect caused by oxygen vacancy migration in SrTiO3 ceramic," Physica B: Condensed Matter, vol. 615, p. 413080, 2021.
[69]B. Behera, P. Nayak, and R. Choudhary, "Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics," Materials Chemistry and Physics, vol. 106, no. 2-3, pp. 193-197, 2007.
[70]C.-C. Tsai et al., "Investigation of the piezoelectric and anti-reduction properties of (Ba, Ca)(Ti, Sn, Hf) textured ceramics prepared under low oxygen partial pressure conditions at low sintering temperatures," Journal of the European Ceramic Society, vol. 41, no. 4, pp. 2472-2481, 2021.
[71]C.-C. Tsai et al., "Effect of BaTiO3 templates on the electrical characteristics of (Ba, Ca)(Ti, Sn, Hf)-based ceramics under the reducing atmosphere for actuator applications," Ceramics International, vol. 47, no. 5, pp. 7207-7217, 2021.
[72]S. P. George, J. Isaac, and J. Philip, "Coupled field analysis of piezoelectric materials for sensor and actuator applications using finite element method," Materials Today: Proceedings, vol. 59, pp. 1202-1210, 2022.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top