跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:向奕璁
研究生(外文):HSIANG, YI-TSUNG
論文名稱:離子氮化對沃斯田體型不銹鋼機械性質與顯微結構影響之研究
論文名稱(外文):Study on the Effects of Ion Nitriding on the Mechanical Properties and Microstructure of Austenitic Stainless Stell
指導教授:吳忠春
指導教授(外文):WU, CHUNG-CHUN
口試委員:李世欽曾重仁吳忠春
口試委員(外文):LI, SHI-QINZENG, CHONG-RENWU, CHUNG-CHUN
口試日期:2024-01-22
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:63
中文關鍵詞:離子氮化沃斯田體不銹鋼氮化層殘留應力
外文關鍵詞:Ion nitridingAustenitic stainlessNitrided layerResidual stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討AISI 304與AISI 316沃斯田體型不銹鋼,經5種組合的離子氮化處理後,運用X光繞射儀、金相顯微鏡觀察、掃描式電子顯微鏡與能量散射光譜儀了解氮化層顯微結構,再運用硬度試驗機、磨耗試驗機了解機械性質的變化,及氮原子滲入不銹鋼對表面所產生殘留應力的大小,再透過鹽霧試驗機觀察氮化層對於腐蝕的耐受性。
低溫離子氮化在提升不銹鋼表面硬度有極佳的表現,表面形成耐磨耗滲氮層,根據實驗結果顯示430℃離子氮化24小時的不銹鋼試片,可在耐腐蝕與耐磨耗間取得平衡,可觀察到其表面硬度由原先330~360HV提升至1209~1330HV,氮化層厚度約為11~15μm,由於氮化過程使材料表面產生擠壓應力,利用日本Pulstec u-X360n殘留應力分析儀,量測其殘留應力值,由表面往基材做量測,取得殘留應力值由-981MPa遞減至-374MPa,在相同的乾滑動測試下,無離子氮化處理的生料試片,將損失24.4mg的重量,而離子氮化處理過之試片,僅損失了0.5mg的重量,對於耐磨耗性有相當大的提升,就本次實驗結果而已,在不考慮腐蝕抗性的情況下,430℃離子氮化72小時的試片,硬度可以高達1580HV、氮化層可達到53μm、乾滑動測試僅損失0.1mg的重量,當氮化處理溫度超過450℃與處理時長達48小時以上時,組織產生變化造成晶格膨脹,透過X光繞射儀與能量散射光譜儀得知有氮化鉻生成於表面,除了殘留應力值大幅提高,也將影響表面氮化層結構的破裂,導致影響其耐腐蝕特性。
加長處理時間雖然可以得到更好的氮化層厚度、硬度與表面耐磨耗性,但是相對抗腐蝕性能變差,本論文所使用430℃24小時此一參數,可以兼具良好的抗蝕性能與表面耐磨耗性。

This study delves into the characteristics of AISI 304 and AISI 316 Austenitic stainless steel. Following five combinations of ion nitriding treatment, an exhaustive analysis of the microstructure within the nitrided layer was conducted utilizing X-ray diffractometry, metallographic microscopy, scanning electron microscopy, and energy dispersive spectrometry. Subsequently, the alterations in mechanical properties and the extent of surface residual stress induced by the infiltration of nitrogen atoms into the stainless steel were comprehensively examined using a hardness tester and an abrasion tester. Moreover, a salt spray tester was employed to scrutinize the resistance of the nitrided layer to corrosion.
Low-temperature ion nitriding demonstrates exceptional efficacy in enhancing the surface hardness of stainless steel while concurrently establishing a durable and wear-resistant nitriding layer on its surface. Based on experimental findings, the stainless-steel specimen subjected to ion nitriding at 430°C for a duration of 24 hours exhibited an optimal equilibrium between corrosion resistance and abrasion resistance. The observed surface hardness went up from the initial range of 330-360HV to the elevated range of 1209-1330HV. Furthermore, the resultant nitrided layer demonstrated a thickness of approximately 11-15μm. The nitriding process creates extrusion stress on the material's surface. Using a Japanese-made PULSTEC μ-X360n Residual Stress Analyzer, the residual stress was measured from the surface to the substrate, exhibiting a discernible reduction from -981MPa to -374MPa. In parallel, when subjected to an identical dry sliding test, the raw material specimen devoid of ion-nitriding treatment experienced a weight loss of 24.4mg. In stark contrast, the ion-nitrided specimen showcased a significantly improved wear resistance, manifesting a mere 0.5mg weight loss. In analyzing the outcomes of this experiment, excluding considerations for corrosion resistance, it is noteworthy that the hardness of the specimen subjected to ion nitriding at 430°C for 72 hours reached an impressive 1580HV. Concurrently, the nitrided layer exhibited substantial thickness, measuring up to 53μm, and the dry sliding test recorded a minimal weight loss of 0.1mg. However, when the nitriding temperature exceeded 450°C and treatment durations surpassed 48 hours, structural alterations occurred, leading to lattice expansion. The deployment of X-ray diffractometry and energy dispersive spectrometry revealed the formation of chromium nitride on the surface. This not only markedly increased the residual stress value but also impacted the integrity of the nitride layer structure, thereby influencing corrosion resistance characteristics.
While an extended treatment duration yields improved nitrided layer thickness, hardness, and surface abrasion resistance, there is a concomitant degradation in relative corrosion resistance. This research paper advocates for the utilization of a specific parameter set – 430°C for 24 hours – concurrently ensuring commendable corrosion resistance and surface wear resistance.

摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究背景 1
1.3研究目的 2
第二章 基礎理論與文獻回顧 3
2.1不銹鋼 3
2.2鉻鎳系-沃斯田體型不銹鋼 3
2.2.1 AISI 304不銹鋼 4
2.2.2 AISI 316不銹鋼 4
2.3 氮化處理 4
2.3.1 氣體氮化處理 5
2.3.2 鹽浴氮化處理(液體氮化) 5
2.3.3 離子氮化處理 6
2.4 不銹鋼離子氮化 7
第三章 實驗方法與步驟 9
3.1實驗材料 9
3.2氮化設備 12
3.3氮化程序 13
3.4檢驗設備與原理 14
3.4.1輝光放電分光儀(GDS) 14
3.4.2 X光繞射儀(XRD) 15
3.4.3硬度試驗機 16
3.4.4金相顯微鏡 18
3.4.5掃描式電子顯微鏡(SEM) 20
3.4.6能量散射光譜儀(EDS) 21
3.4.7鹽霧試驗機 21
3.4.8磨耗試驗機 22
3.4.9殘留應力檢測儀 23
3.5試片製作與檢驗參數 25
3.5.1 XRD試片 25
3.5.2硬度試驗試片 25
3.5.3金相、SEM與EDM分析試片 25
3.5.4磨耗、鹽霧試驗試片 25
3.5.5殘留應力分析試片 26
第四章 結果與討論 29
4.1 X光繞射分析 29
4.2硬度試驗量測 32
4.3顯微組織量測 34
4.3.1滲氮深度 34
4.3.2 SEM與EDS 37
4.4耐磨耗試驗 48
4.4.1重量損失 48
4.4.2磨痕寬度 50
4.5耐腐蝕試驗 53
4.6殘留應力分析 56
第五章 結論 58
參考文獻 60


1.金重勳,熱處理,復文書局,民73年。
2.黃振賢,金屬熱處理,新文京刊發出版有限公司,民103年。
3.李勝隆,熱處理,金屬材料原理與應用,全華圖書股份有限公司,2014。
4.陳石法、蔡希杰,機械材料,高立圖書有限公司,民91年。
5.張印本,金屬材料對照手冊:含各國標準,全華科技圖書股份有限公司,2005。
6.臺灣金屬熱處理學會,金屬熱處理,臺灣金屬熱處理學會,2014。
7.古錦松,認識不銹鋼材料,中華民國職業訓練研究發展中心,民90年。
8.謝淵清編譯,新版熱處理學技術,復文書局,民74年。
9.陸志鴻,金屬熱處理,中國機械工程學會,民74年。
10.賴梗陽,熱處理技術用書,3.鋼鐵表面熱處理,復漢出版社有限公司,民87年。
11.左汝林,金屬材料學 材料科學與工程專業本科系列教材,重慶大學出版社,2008。
12.Jun Wang, Ji Xiong, Qian Peng, Hongyuan Fan, Ying Wang,Guijiang Li, Baoluo Shen,Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel, Materials Characterization 60 (2009) 197–203
13.J. Biehler, H. Hoche, M. Oechsner:, Nitriding behavior and corrosion properties of AISI 304L and 316L austenitic stainless steel with deformation-induced martensite, Surface & Coatings Technology Volume 324, 15 September 2017, Pages 121-128
14.X. Tao, X. Liu, A. Matthews, A. Leyland:, The influence of stacking fault energy on plasticity mechanisms in triode-plasma nitrided austenitic stainless steels: implications for the structure and stability of nitrogen-expanded austenite, Acta Materialia (2018)
15.Paula Cisquini, Simão Vervloet Ramos, Pedro Rupf Pereira Viana, Vanessa de Freitas Cunha Lins, Adonias Ribeiro Franco Jr. , Estéfano Aparecido Vieira:, Effect of the roughness produced by plasma nitrocarburizing on corrosion resistance of AISI 304 austenitic stainless steel, Journal of Materials Research and Technology . 2019;8(2):1897–1906
16.J. Feugeas, B. Go´mez, A. Craievich:, Ion nitriding of stainless steels. Real time surface characterization by synchrotron X-ray diffraction, Surface and Coatings Technology 154 (2002) 167–175
17.H.T. Chen, M.F. Yan, S.S. Fu:, Martensite transformation induced by plasma nitrocarburizing on AISI304 austenitic stainless steel, Vacuum 105 (2014) 33-38
18.Wenzhi Xie , Yunxia Chen, Dazhi Chen, Yang Yang, Chengsong Zhang, Guodong Cui and Yixue Wang:, Low-pressure gas nitriding of AISI 304 austenitic stainless steel reducing the precipitation of chromium nitrides, Mater. Res. Express 7 (2020) 066406
19.L. Nosei, S. Farina, M. Ávalos, L. Náchez, B.J. Gómez, J. Feugeas:, Corrosion behavior of ion nitrided AISI 316L stainless steel, Thin Solid Films 516 (2008) 1044–1050
20.Gui-jiang Li, Qian Peng, Cong Li, Ying Wang, Jian Gao, Shu-yuan Chen, Jun Wang, Bao-luo Shen:, Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel , Surface & Coatings Technology 202 (2008) 2749–2754
21.O. Oztur, S. Okur, J.P. Riviere:, Structural and magnetic characterization of plasma ion nitride layer on 316L stainless steel alloy, Nuclear Instruments and Methods in Physics Research B 267 (2009) 1540–1545
22.M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, G. Proust:, The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless steel, Surface & Coatings Technology 221 (2013) 191-195
23.Yang Li, Zhuo Wang, Liang Wang:, Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Applied Surface Science 298 (2014) 243-250
24.M. Yazıcı, O. Çomaklı, T. Yetim, A.F. Yetim, A. Çelik:, The effect of plasma nitriding temperature on the electrochemical and semiconducting properties of thin passive films formed on 316 L stainless steel implant material in SBF solution, Surface & Coatings Technology 261 (2015) 181-188
25.Insup Lee, Abhik Barua:, Behavior of the S-phase of plasma nitrocarburized 316L austenitic stainless steel on changing pulse frequency and discharge voltage at fixed pulse-off time, Surface & Coatings Technology 307 (2016) 1045-1052
26.M. Chemkhi, D. Retraint, A. Roos, C. Demangel:, Role and effect of mechanical polishing on the enhancement of the duplex mechanical attrition/plasma nitriding treatment of AISI 316L steel, Surface & Coatings Technology (2017)
27.Andr´e Paulo Tschiptschin, Arthur Seiji Nishikawa, Luis Bernardo Varela, Carlos Eduardo Pinedo:, Thermal stability of expanded austenite formed on a DC plasma nitrided 316L austenitic stainless steel, Thin Solid Films (2017)
28.Ali Fatih Yetim, Mustafa Yazıcı:, Wear Resistance and Non-Magnetic Layer Formation on 316L Implant Material with Plasma Nitriding, Journal of Bionic Engineering 11 (2014) 620–629
29.ASTM A240 https://www.astm.org/a0240_a0240m-23a.html
30.ASTM E384 https://www.astm.org/e0384-22.html
31.黃文雄,儀器總覽-材料分析儀器,行政院國家科學委員會精密儀器發展中心,民87年。
32.張泰權,建立比對滲碳鋼殘留沃斯田體量之津相標準組織,碩士論文,大同大學,2015。
33.郭品柔,離子氮化對麻田散體型不銹鋼顯微結構與機械性質影響之研究,碩士論文,南臺科技大學,2023。
34.許彥夫、楊純智編譯,金屬切削原理與工具機,復文書局,1986。
35.徐景福編譯,精密金屬模具的磨光加工,建宏出版社,民81年。
36.蕭北魁,金相圖概論,Phase diagrams in metallurgy,復文書局,民79。
37.ASTM B117 https://www.galvanizeit.com/uploads/resources/ASTM-B-117-yr11.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊