跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐俊瑋
研究生(外文):HSU,CHUN-WEI
論文名稱:利用物理不可複製函式建構階層式存取控制機制應用於電子病歷
論文名稱(外文):Hierarchical Access Control Using Physical Unclonable Functions for Electronic Medical Record
指導教授:李添福李添福引用關係
指導教授(外文):LEE, TIAN-FU
口試委員:張啟昌王俊國
口試委員(外文):CHANG,CHI-CHANGWANG, JYUN-GUO
口試日期:2023-12-28
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學資訊學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:49
中文關鍵詞:階層式存取控制物理不可複製函數拉格朗日插值法線性方程式一般資料保護規則健康保險便利和責任法案
外文關鍵詞:Hierarchical Access ControlPhysical Unclonable FunctionLagrange interpolation polynomialLinear equationGeneral Data Protection RegulationHealth Insurance Portability and Accountability Act
ORCID或ResearchGate:orcid.org/0009-0002-2142-7647
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
階層式存取控制(access control)金鑰管理(key management)機制是將使用者分許多群,使得各群間有權限順序的關係,減少使用者及管理者儲存與管理金鑰的不便。對此,此機制的重點在於如何讓金鑰在各層級中能夠被有效率的分配與取得,並能夠支持動態管理金鑰的情況。在近年來,階層式存取控制金鑰管理機制持續被提出並應用於電子病歷(e-medicine record)的安全,然而在現有機制上皆有著安全性上的缺失或需要大量的儲存空間及運算量。因此本研究提出了安全且有效率的階層式存取控制金鑰管理機制,本機制使用物理不可複製函式(Physical Unclonable Function)來做為身分認證,其特有的特性可以推算出使用者金鑰但不需消耗儲存空間,使本機制在身分認證的安全性與運算消耗上優於其他的機制。本機制為階層之間建立線性關係,利用線性關係容易建立且計算快速的特性以達到快速建立階層的效果,並利用Lagrange interpolation polynomial來說明其安全性,使本機制能夠有效率的進行動態金鑰管理。對於電子病歷的安全與隱私問題,本機制符合一般資料保護規則(General Data Protection Regulation)與健康保險便利和責任法案 (Health Insurance Portability and Accountability Act),GDPR 與 HIPAA 是對於病患個人資料保護上的重要規範,許多專家學者於醫療環境中所提出的資訊安全相關研究皆符合GDPR 與 HIPAA。所提機制不僅具有安全特性與效率的優勢外,並符合GDPR與HIPAA相關安全法規。
The key management scheme of hierarchical access control can establish relationships between hierarchical users, thereby improving the efficiency of key management. The key point of this scheme is to efficiently distributing and acquiring keys across a system, while supporting dynamic key management. In recent years, hierarchical access control key management schemes have been continuously proposed and applied to protect e-medicine records. However, these schemes either have security flaws or require large amounts of storage and computation. Therefore, this study proposes a secure and efficient hierarchical access control key management scheme, using the Physical Unclonable Functions (PUF) as the identity verification. The unique property of PUF allows user keys to be derived without storage space, enhancing security and computing efficiency compared to other schemes. The proposed scheme establishes linear relationships between hierarchical structures and utilizes simple and fast calculations of linear relationships to achieve rapid hierarchical structure establishment. Furthermore, the proposed scheme uses Lagrange interpolation polynomial to prove its security. The proposed scheme complies with the General Data Protection Regulation (GDPR) and Health Insurance Portability and Accountability Act (HIPAA), which are important regulations regarding the protection of patient personal data. Many information security-related studies proposed by experts and scholars in the medical field are in compliance with GDPR and HIPAA. The proposed scheme not only has the advantages of security features and efficiency, but also complies with GDPR and HIPAA security regulations.
第一章 緒論
1.1 研究背景
1.2 一般資料保護規則(General Data Protection Regulation)
1.3健康保險便利和責任法案(Health Insurance Portability and Accountability Act)
1.4 動機與目的
1.5研究貢獻
1.6論文架構
第二章 文獻探討
2.1 階層式存取控制(Hierarchical Access Control)
2.2 物理不可複製函式(Physical Unclonable Function)
2.3 Lagrange interpolation polynomial (Lagrange插值多項式)
第三章 研究方法
3.1 所提的機制
3.1.1 符號表
3.1.2 金鑰產生階段
3.1.3金鑰推導階段
3.1.4 SC階層新增階段
3.1.5 SC階層刪除階段
3.2 所提的機制範例
3.2.1 金鑰產生階段
3.2.2金鑰推導階段
3.2.3 SC階層新增階段模擬
3.2.4 SC階層刪除階段模擬
第四章 安全分析
4.1 BAN-logic 證明
4.1.1 BAN-logic 的推理規則
4.1.2 Goals of the proposed authenticated key agreement
4.1.3 Implementation form
4.1.4 Assumptions
4.1.5 Verification
4.2 安全分析
4.2.1 正確性(Correctness):
4.2.2 金鑰安全性(Key security):
4.2.3 外部攻擊(External attacks):
4.2.4 反向攻擊(Contrary attacks):
4.2.5 合謀攻擊(Cooperative attacks):
4.2.6 等式攻擊(Equation attacks):
4.2.7 中間人攻擊(Man-in-the-Middle):
4.2.8 前後向安全性(Back & Forward secrecy):
4.2.9 無須儲存個人金鑰(No need to store secret keys):
4.2.10 機器學習攻擊(Machine Learning attacks):
4.3 符合GDPR規則
4.3.1 合法、公平和透明
4.3.2 目的限制
4.3.3 資料最小化
4.3.4 準確度
4.3.5 保存限制
4.3.6 完整性和保密性
4.4 符合HIPAA規則
4.4.2 資訊保密性
4.4.3 病患控制權
4.4.4 資訊完整性
4.4.5 准許例外狀況發生
4.5 安全特性比較
4.6 效能分析
第五章 結論
參考文獻

[1]T.-F. Lee, R.-Y. Chen (2014) A key management scheme for hierarchical access control in e-medicine systems, Master thesis Department of Medical Informatics, Tzu Chi University, Taiwan
[2]U.S. Department of Health and Human Services. Health Insurance Portability and Accountability Act of 1996. 1996. Available online: https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996 (accessed on 11 December 2022).
[3]European Union. General Data Protection Regulation GDPR. 2016. Available online: https://gdpr-info.eu/ (accessed on 11 December 2022).
[4]S.-G. Akl, P.-D. Taylor, (1983) Cryptography solution to a problem of access control in a hierarchy. ACM Transactions on Computer Systems, vol. 1, No. 3, pp.239-248. DOI:10.1145/357369.357372.
[5]F.-G. Jeng, C.-M. Wang, (2006) An efficient key-management scheme for hierarchical access control based on elliptic curve cryptosystem. Journal of Systems and Software. vol. 79, pp.1161-1167. DOI: https://doi.org/10.1016/j.jss.2006.01.018.
[6]Y.-F. Chung, H.-H. Lee, F. Lai, T.-S. Chen, (2008). Access control in user hierarchy based on elliptic curve cryptosystem. information Sciences, vol. 178, pp.230-243. DOI: https://doi.org/10.1016/j.ins.2007.08.001.
[7]A.-K. Das, N.-R. Paul, L. Tripathy (2012). Cryptanalysis and improvement of an access control in user hierarchy based on elliptic curve cryptosystem. information Sciences, vol. 209, pp.80-92. DOI: https://doi.org/10.1016/j.ins.2012.04.036.
[8]M. Nikooghadam, A. Zakerolhosseini, M.-E. Moghaddam, (2010) Efficient utilization of elliptic curve cryptosystem for hierarchical access control. Journal of Systems and Software, vol. 83, pp.1917-1929. DOI: https://doi.org/10.1016/j.jss.2010.05.072.
[9]V. Odelu, A.-K. Das, A. Goswami, (2013) An Effective and Secure Key-Management Scheme for Hierarchical Access Control in E-Medicine System. Journal of Medical Systems, vol. 37, No.2, DOI: 10.1007/s10916-012-9920-5
[10]W.-Y. Chao, C.-Y. Tsai, M.-S. Hwang, (2017) An improved key-management scheme for hierarchical access control. international Journal of Network Security, vol. 19, No.4, pp.639-643, DOI: 10.6633/IJNS.201707.19(4).18
[11]T.C. Hsiao, Z.-Y. Wu, T.-L. Chen, Y.-F. Chung, T.-S. Chen, (2018) A hierarchical access control scheme based on Lagrange interpolation for mobile agents. international Journal of Distributed Sensor Networks, DOI: 10.1177/1550147718790892
[12]S. Lal, N.-V. Kumar, (2022) An Efficient Flexible Hierarchical Access Control Scheme Enabling Real-Life Exceptions. Sådhanå, DOI: https://doi.org/10.1007/s12046-021-01776-0
[13]C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, (2014) Physical Unclonable Functions and Applications: A Tutorial. Proceedings of the IEEE, vol. 102, pp. 1126-1141, DOI: 10.1109/JPROC.2014.2320516
[14]W. Liang, S. Xie, J. Long, K.-C. Li, D. Zhang, K. Li, (2019) A double PUF-based RFID identity authentication protocol in service-centric internet of things environments, Information Sciences, vol. 503, pp. 129-147, DOI: https://doi.org/10.1016/j.ins.2019.06.047
[15]Y. Cui, J. Li, C. Wang, C. Gu, W. Liu, (2021) A lightweight key renewal Scheme based authentication protocol with configurable RO PUF for clustered sensor networks, Microelectronics Journal, vol. 117, DOI: https://doi.org/10.1016/j.mejo.2021.105265
[16]Y.-L. Chen, (2018) Robust PUF Design, Master thesis Department of computer science and engineering, National Chung Hsing University, Taiwan
[17]Y. Guo, T. Dee, A. Tyagi, (2017) Barrel Shifter Physical Unclonable Function Based Encryption, Cryptography, DOI: https://doi.org/10.48550/arXiv.1711.05332
[18]S. Joshi, S.-P. Mohanty, E. Kougianos, (2017) Everything You Wanted to Know About PUFs, IEEE Potentials, vol. 36, pp.38-46, DOI: 10.1109/MPOT.2015.2490261
[19]R. Maes (2013) Physically Unclonable Functions: Concept and Constructions, Physically Unclonable Functions: Constructions, pp. 11-48, DOI: https://doi.org/10.1007/978-3-642-41395-7_2
[20]T. McGrath, I.-E. Bagci, Z.-M. Wang, U. Roedig, R.-J. Young, (2019) A PUF taxonomy, Applied Physics Reviews, vol. 10, DOI: https://doi.org/10.1063/1.5079407
[21]I. Haider, M Höberl, B. Rinner, (2016) Trusted Sensors for Participatory Sensing and IoT Applications based on Physically Unclonable Functions, IoTPTS '16: Proceedings of the 2nd ACM International Workshop on IoT Privacy, Trust, and Security, pp. 14-21, DOI: 10.1145/2899007
[22]Y. Bendavid, N. Bagheri, M. Safkhani, S. Rostampour, (2018) IoT Device Security: Challenging “A Lightweight RFID Mutual Authentication Protocol Based on Physical Unclonable Function”, Sensors 2018, vol.18 DOI: 10.3390/s18124444
[23]M.-A. Prada-Delgado, I. Baturone, G. Dittmann, J. Jelitto, A. Kind, (2020) PUF-derived IoT identities in a zero-knowledge protocol for blockchain, Internet of Things, vol. 9, DOI: https://doi.org/10.1016/j.iot.2019.100057
[24]T.-F. Lee, W.-Y. Chen, (2021) Lightweight fog computing-based authentication protocols using physically unclonable functions for internet of medical things. Journal of Information Security and Applications, vol. 59, DOI: https://doi.org/10.1016/j.jisa.2021.102817
[25]T.-F. Lee, Y.-H. Wang, W.-J. Huang, C.-W. Hsu, T.-H. Lin, (2021) A Secure and Efficient Access Control Scheme Based on PUF for Health Information Systems. ICMHI '21: Proceedings of the 5th International Conference on Medical and Health Informatics, pp. 187-191, DOI: https://doi.org/10.1145/3472813.3473188
[26]T.-F. Lee, X. Ye, S.-H. Lin, (2022) Anonymous Dynamic Group Authenticated Key Agreements Using Physical Unclonable Functions for Internet of Medical Things. IEEE Internet of Things Journal, vol. 9, pp. 15336-15348, DOI: 10.1109/JIOT.2022.3149117
[27]Y. Park, D. Ryu, D. Kwon, Y. Park, (2022) Provably Secure Mutual Authentication and Key Agreement Scheme Using PUF in Internet of Drones Deployments, Sensors 2023, vol. 23, DOI: https://doi.org/10.3390/s23042034
[28]F. Liu, Y. Yan, Y. Sun, J. Liu, D. Li, Z. Guan (2022) Extremely Lightweight PUF-based Batch Authentication Protocol for End-Edge-Cloud Hierarchical Smart Grid, Security and Communication Networks, vol. 2022, DOI: https://doi.org/10.1155/2022/9774853
[29]T.-F. Lee, K.-W. Lin, Y.-P. Hsieh, K.-C. Lee, (2023) Lightweight Cloud Computing-Based RFID Authentication Protocols Using PUF for e-Healthcare Systems. IEEE Sensors Journal, vol. 23, pp. 6338-6349, DOI: 10.1109/JSEN.2023.3242132
[30]S. Yu, Y. Park, (2023) Robust and Efficient Authentication and Group–Proof Scheme Using Physical Unclonable Functions for Wearable Computing, Sensors 2023, vol. 23, DOI: https://doi.org/10.3390/s23125747
[31]D.A. Quadling, (1966) Lagrange`s interpolation formula. The Mathematical Gazette, pp.372-375. DOI: https://doi.org/10.1017/S0025557200243349
[32]M. Burrows, M. Abadi, R. Needham, (1989) A logic of authentication. ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990, DOI: 10.1145/77648.77649.
[33]S. Wu, K. chen, (2012) An Efficient Key-Management Scheme for Hierarchical Access Control in E-Medicine System, Journal of Medical Systems, vol. 36, No. 4, pp. 2325-2337, DOI: 10.1007/s10916-011-9700-7

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top