跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邰頌佳
研究生(外文):DABRAL, SONIKA
論文名稱:揭示科技準備和便利設施對印度消費者光顧智能旅店意願之形塑
論文名稱(外文):Unveiling the Role of Technology Readiness and Amenities in Shaping Indian Consumers' Intentions to Visit Smart Hotels
指導教授:穆馬速穆馬速引用關係
指導教授(外文):MOSLEHPOUR, MASSOUD
口試委員:穆馬速威瑪庫瑪林佩冠
口試委員(外文):MOSLEHPOUR, MASSOUDKUMAR, VIMALLIN, PEI-KUAN
口試日期:2024-06-07
學位類別:碩士
校院名稱:亞洲大學
系所名稱:經營管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:59
中文關鍵詞:消費者技術準備技術便利性知覺易用性知覺有用性行為意圖
外文關鍵詞:Consumer Technology ReadinessTechnology AmenitiesPerceived ease of usePerceived UsefulnessBehavior Intention
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的-本研究將分析影響印度個人造訪智慧酒店傾向的因素。本研究旨在探討印度個人的技術準備情況,並研究技術設施的可用性將如何影響他們在該國採用智慧飯店的傾向。

方法/途徑 - 該研究採用定量方法,利用問卷調查從印度 400 名參與者收集數據。建構的測量和縮放是基於該領域內已建立和驗證的工具,確保研究結果的可靠性和有效性。將使用 SmartPLS 進行資料分析,評估可靠性、有效性和假設檢定。

研究結果-研究結果顯示,感知易用性顯著增強了感知有用性和態度,而感知有用性顯著改善了態度。技術設施對感知有用性和行為意圖有正面影響。消費者科技準備度提升了感知易用性和行為意圖。此外,態度對行為意圖有很強的影響。中介分析顯示,感知有用性和態度在技術設施對行為意圖的影響中起中介作用,而感知易用性和態度在消費者科技準備度對行為意圖的影響中起中介作用。總體而言,感知易用性、感知有用性和態度共同在消費者科技準備度對行為意圖的正面影響中起中介作用。

限制-考慮到印度人口眾多且多樣化,研究的樣本量相對有限。此外,其主要重點是研究技術準備和便利設施如何有助於塑造消費者訪問智慧酒店的意圖,可能會忽略其他可能影響這些意圖的重要因素。

啟示-研究的結果為飯店管理者、政策制定者和行銷人員提供了寶貴的指導。酒店經理可以認識到消費者技術準備程度對於塑造參觀智慧酒店的意願的重要性,從而引導他們優先考慮增強技術設施和客戶教育,以提高酒店的吸引力。政策制定者可以利用這些見解來倡導智慧旅遊舉措,從而有可能吸引更多對酒店業技術基礎設施的投資。此外,行銷人員可以客製化行銷活動來展示先進的技術設施,有效地吸引精通技術的消費者,並增強智慧酒店的整體賓客體驗。

原創性/價值—在印度背景下明顯缺乏對該主題的研究。鑑於印度目前缺乏這些設施,這項研究將提供實踐和理論的未來視角,並展望印度酒店業的潛在轉型。
Purpose – This research will analyze the factors that will impact the inclination of individuals in India to visit smart hotels. This study aims to explore the technology readiness among individuals in India and examine how the availability of technology amenities will influence their inclination towards the potential adoption of smart hotels in the country.

Methodology/approach – The study employs a quantitative approach, utilizing questionnaires to collect data from 400 participants in India. The measurement and scaling of constructs are grounded in established and validated tools within the field, ensuring the reliability and validity of the research findings. Data analysis will be conducted using SmartPLS, assessing reliability, validity, and hypothesis testing.

Findings – The findings indicate that perceived ease of use significantly enhances perceived usefulness and attitude, while perceived usefulness significantly improves attitude. Technology amenities positively impact perceived usefulness and behavior intentions. Consumer technology readiness boosts perceived ease of use and behavior intention. Additionally, attitude strongly influences behavior intention. Mediation analysis shows that perceived usefulness and attitude mediate the effect of technology amenities on behavior intention, while perceived ease of use and attitude mediate the effects of consumer technology readiness on behavior intention. Overall, perceived ease of use, perceived usefulness, and attitude together mediate the positive impact of consumer technology readiness on behavior intention.

Limitations - The study's sample size was relatively limited when considering India's vast and diverse population. Furthermore, its primary focus was on examining how technology readiness and amenities contribute to shaping consumers' intentions to visit smart hotels, possibly sidelining other essential factors that could also influence these intentions.

Implication - The study's findings provide valuable guidance for hotel managers, policymakers, and marketers. Hotel managers can recognize the significance of consumer technology readiness in shaping intentions to visit smart hotels, leading them to prioritize the enhancement of technological amenities and customer education to boost hotel appeal. Policymakers can utilize these insights to advocate for smart tourism initiatives, potentially attracting greater investment in technological infrastructure within the hospitality sector. Additionally, marketers can tailor campaigns to showcase advanced technological amenities, effectively appealing to tech-savvy consumers and enhancing the overall guest experience in smart hotels.

Originality/Value – There is a noticeable absence of research on the topic within the Indian context. Given the current absence of these facilities in India, this study will provide a practical and theoretical futuristic perspective, envisioning the potential transformation of the Indian hospitality industry.
TABLE OF CONTENTS
ACKNOWLEDGEMENT i
ABSTRACT ii
摘要 iv
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1: Introduction 1
Research Background 1
Statement of the Problem 4
Research Objective 5
Research Questions 5
Definition of Terms and Abbreviation 5
Chapter 2: Literature Review 7
Technology acceptance model 7
Technology Amenities (TA) and Consumer Technology Readiness (CTR) 8
Perceived Ease of Use (PEOU), Perceived usefulness (PU) and Attitude (ATT) 9
Behavior Intention (BI) 10
Hypotheses Development 11
Chapter 3: Methodology 14
Research Methodology 14
Research Framework 14
Dependent Variable 15
Independent Variable 15
Mediating Variable 15
Research Hypotheses 15
Measurement and Scaling 16
Sampling and Data collection 17
Data Analysis Procedure 18
Chapter 4: Result and Findings 19
Descriptive statistics 19
Control Variable Analysis 20
Measurement Model Analysis 21
Outer Model Evaluation 22
Convergent Validity 22
Discriminant Validity 24
Composite Reliability 25
Validity and Reliability Summary 25
Inner Model Evaluation 26
Hypotheses Testing (Path-Coefficient) 27
Mediation Testing 29
Summary of Hypotheses Testing Result 31
Chapter 5: Discussion and Conclusion 33
Result Summary 33
H1. Technology amenities positively impact behavior intentions to a significant extent 34
H2. Technology amenities positively impact perceived usefulness to a significant extent 34
H3. Consumer technology readiness positively impacts perceived ease of use to a significant extent 35
H4. Consumer technology readiness positively impacts behavior intention to a significant extent 35
H5: Perceived ease of use positively impacts perceived usefulness to a significant extent 36
H6. Perceived usefulness positively impacts attitude to a significant extent 36
H7. Perceived ease of use positively impacts attitude to a significant extent 36
H8. Attitude positively impacts Behavior intention to a significant extent 37
H9. Perceived usefulness and attitude mediate the positive impact of technology amenities on behavior intention 38
H10. Perceived ease of use, perceived usefulness, and attitude mediate the positive impacts of consumer technology readiness on behavior intention 38
H11. Perceived ease of use and attitude mediate the positive impacts of consumer technology readiness on behavior intention 38
Research Implications 40
Limitations and Future Research Suggestions 41
References 42
APPENDIX 47



LIST OF TABLES
Table 1. Summary Table of the Questionnaire 16
Table 2. Descriptive Statistics 20
Table 3. Control Variables Result 21
Table 4. Validity Result 23
Table 5. Discriminant Validity through Fornell-Larcker (F-L) Criterion 24
Table 6. Discriminant Validity through HTMT Result 24
Table 7. Composite Reliability 25
Table 8. Validity and Reliability Summary 26
Table 9. Path Coefficient 28
Table 10. Mediation Testing Summary 30
Table 11. Summary of Hypotheses Testing Result 32



LIST OF FIGURES
Figure 1. Research Framework 14
Figure 2. Control Variable Path Analysis 21
Figure 3. Convergent Validity 22
Figure 4. Bootstrapping Result 27
References
Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.
Ajzen, I. (1980). Understanding attitudes and predictiing social behavior. Englewood cliffs.
Basyuk, D., Myts, J., & Kokhan, O. M. (2014). The introduction of the intellectual property concept in the hotel industry of Ukraine.
Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2016). Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25(1), 1-24.
Binbasioglu, H., & Turk, M. (2020). Mobile technology acceptance among Turkish travelers. In Digital Marketing Strategies for Tourism, Hospitality, and Airline Industries (pp. 111-140). IGI Global.
Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the association for information systems, 8(4), 3.
Chen, Y., Khan, S. K., Shiwakoti, N., Stasinopoulos, P., & Aghabayk, K. (2023). Analysis of Australian public acceptance of fully automated vehicles by extending technology acceptance model. Case studies on transport policy, 14, 101072.
Cheung, R., & Vogel, D. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. Computers & education, 63, 160-175.
Chung, N., Han, H., & Joun, Y. (2015). Tourists’ intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Computers in Human Behavior, 50, 588-599.
Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
De Kervenoael, R., Hasan, R., Schwob, A., & Goh, E. (2020). Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tourism Management, 78, 104042.
Domanski, M. (2020). The concept of a smart hotel and its impact on guests’ satisfaction, privacy and the perception of the service quality.
Dutilly, D. T., Browne, J., Ingeneri, N. P., & Monroe, S. R. (2015). U.S. Patent No. 8,961,309. Washington, DC: U.S. Patent and Trademark Office.
Eriksson, N., & Fagerstrøm, A. (2018). The relative impact of Wi-Fi service on young consumers’ hotel booking online. Journal of Hospitality & Tourism Research, 42(7), 1152-1169.
Fishbein, M., (1979). A theory of reasoned action: Some applications and implications. In: Howe, H.E., Page, M.M. (Eds.), Nebraska Symposium on Motivation. University of Nebraska Press, Lincoln, pp. 65–116.
Go, H., Kang, M., & Suh, S. C. (2020). Machine learning of robots in tourism and hospitality: interactive technology acceptance model (iTAM)–cutting edge. Tourism review, 75(4), 625-636.
He, Y., Chen, Q., & Kitkuakul, S. (2018). Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy. Cogent Business & Management, 5(1), 1459006.
Huang, Y. C., Chang, L. L., Yu, C. P., & Chen, J. (2019). Examining an extended technology acceptance model with experience construct on hotel consumers’ adoption of mobile applications. Journal of Hospitality Marketing & Management, 28(8), 957-980.
Huh, H. J., Kim, T. T., & Law, R. (2009). A comparison of competing theoretical models for understanding acceptance behavior of information systems in upscale hotels. International Journal of Hospitality Management, 28(1), 121-134.
Huh, Y. E., & Kim, S. H. (2008). Do early adopters upgrade early? Role of post-adoption behavior in the purchase of next-generation products. Journal of Business Research, 61(1), 40-46.
Jun, J., Lee, K. J., & Kim, B. G. (2016). Factors affecting user acceptance of mobile commerce services. Asia pacific journal of information systems, 26(4), 489-508.
Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 183-213.
Kaushik, A. K., Agrawal, A. K., & Rahman, Z. (2015). Tourist behaviour towards self-service hotel technology adoption: Trust and subjective norm as key antecedents. Tourism Management Perspectives, 16, 278-289.
Kim, M., & Qu, H. (2014). Travelers' behavioral intention toward hotel self-service kiosks usage. International Journal of Contemporary Hospitality Management, 26(2), 225-245.
Kim, T. G., Lee, J. H., & Law, R. (2008). An empirical examination of the acceptance behaviour of hotel front office systems: An extended technology acceptance model. Tourism management, 29(3), 500-513.
Kucukusta, D. (2017). Chinese travelers’ preferences for hotel amenities. International Journal of Contemporary Hospitality Management, 29(7), 1956-1976.
Lai, W. C., & Hung, W. H. (2018). A framework of cloud and AI based intelligent hotel.
Leung, R. (2019). Smart hospitality: Taiwan hotel stakeholder perspectives. Tourism Review, 74(1), 50-62.
Liljander, V., Gillberg, F., Gummerus, J., & Van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13(3), 177-191.
Lin, C. H., Shih, H. Y., & Sher, P. J. (2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology & Marketing, 24(7), 641-657.
Lin, C. H., Shih, H. Y., Sher, P. J., & Wang, Y. L. (2005, July). Consumer adoption of e-service: Integrating technology readiness with the technology acceptance model. In A Unifying Discipline for Melting the Boundaries Technology Management: (pp. 483-488). IEEE.
Lin, J. S. C., & Chang, H. C. (2011). The role of technology readiness in self‐service technology acceptance. Managing Service Quality: An International Journal, 21(4), 424-444.
Liu, C., Hung, K., Wang, D., & Wang, S. (2020). Determinants of self-service technology adoption and implementation in hotels: The case of China. Journal of Hospitality Marketing & Management, 29(6), 636-661.
Liu, Y., Schuberth, F., Liu, Y., & Henseler, J. (2022). Modeling and assessing forged concepts in tourism and hospitality using confirmatory composite analysis. Journal of Business Research, 152, 221-230.
Lowe, B., Dwivedi, Y. K., & d'Alessandro, S. (2019). Consumers and technology in a changing world. European Journal of Marketing, 53(6), 1038-1050.
Morosan, C. (2020). HOTEL FACIAL RECOGNITION SYSTEMS: INSIGHT INTO GUESTS'SYSTEM PERCEPTIONS, CONGRUITY WITH SELFIMAGE, AND ANTICIPATED EMOTIONS. Journal of Electronic Commerce Research, 21(1), 21-38.
Moslehpour, M., Pham, V. K., Wong, W. K., & Bilgiçli, İ. (2018). E-purchase intention of Taiwanese consumers: Sustainable mediation of perceived usefulness and perceived ease of use. Sustainability, 10(1), 234.
Nugroho, M. A., & Fajar, M. A. (2017). Effects of technology readiness towards acceptance of mandatory web-based attendance system. Procedia Computer Science, 124, 319-328.
Ozturk, A. B., Bilgihan, A., Nusair, K., & Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management, 36(6), 1350-1359.
Radner, R., & Rothschild, M. (1975). On the allocation of effort. Journal of economic theory, 10(3), 358-376.
Roberts, D. (2015). Your next hotel could offer a virtual reality experience. Retrieved from.
Roy, S. K., Balaji, M. S., Quazi, A., & Quaddus, M. (2018). Predictors of customer acceptance of and resistance to smart technologies in the retail sector. Journal of Retailing and Consumer Services, 42, 147-160.
Shoenfeld, N. A. (2019). U.S. Patent No. 10,238,210. Washington, DC: U.S. Patent and Trademark Office.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
Tom Dieck, M. C., Jung, T. H., Kim, W. G., & Moon, Y. (2017). Hotel guests’ social media acceptance in luxury hotels. International Journal of Contemporary Hospitality Management, 29(1), 530-550.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
Verma, V., & Thakur, S. (2020). Information and communication technological amenities in the hotel industry. Test Eng Manag [Internet]., 83, 647-58.
Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & management, 44(2), 206-215.
Wang, C. R., & Jeong, M. (2018). What makes you choose Airbnb again? An examination of users’ perceptions toward the website and their stay. International Journal of Hospitality Management, 74, 162-170.
Webster, C., & Ivanov, S. (2020). Robots in travel, tourism and hospitality: Key findings from a global study. Zangador.
Wu, H. C., & Cheng, C. C. (2018). Relationships between technology attachment, experiential relationship quality, experiential risk and experiential sharing intentions in a smart hotel. Journal of Hospitality and Tourism Management, 37, 42-58.
Xu, X. (2018, August). Research on the construction and development of smart hotel from the perspective of serving customers. In 2018 2nd International Conference on Education Science and Economic Management (ICESEM 2018) (pp. 975-978). Atlantis Press.
Yang, H., Song, H., Cheung, C., & Guan, J. (2021). How to enhance hotel guests’ acceptance and experience of smart hotel technology: An examination of visiting intentions. International journal of hospitality management, 97, 103000.
Mun, Y. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & management, 43(3), 350-363.
Zuiderwijk, A., Janssen, M., & Dwivedi, Y. K. (2015). Acceptance and use predictors of open data technologies: Drawing upon the unified theory of acceptance and use of technology. Government information quarterly, 32(4), 429-440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊