跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈺淇
研究生(外文):HUANG, YU QI
論文名稱:具有聚集誘導發射特性的新型材料及其在鈣鈦礦太陽能電池中的應用
論文名稱(外文):Novel materials with aggregation-induced emission properties and applications in perovskite solar cells
指導教授:張源杰
指導教授(外文):CHANG, YUAN JAY
口試委員:周大新張志豪陸勤偉張凱奇
口試委員(外文):CHOW, TA HSINCHANG, CHIH-HAOLU, CHIN-WEICHANG, KAI-CHI
口試日期:2024-01-22
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:130
中文關鍵詞:鈣鈦礦太陽能電池聚集誘導發射特性
外文關鍵詞:perovskite solar cellsaggregation-induced emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中設計並合成出六個分別以10'H-spiro[fluorene-9,9'-phenanthren]-10'-one, tetraphenylethene, dibenzo[g,p]chrysene為核心結構的新型電洞傳輸材料應用於太陽能鈣鈦礦電池中。將三種不同結構phenothiazine, triphenylamine, diphenylamine作為電子予體分別接上核心結構,並嘗試在尾端接上烷氧長鏈以增加溶解度。在這三種不同核心結構中,其10'H-spiro[fluorene-9,9'-phenanthren]-10'-one具有剛性可以增加熱穩定性並且防止堆疊。另外兩個核心具有平面性可以有效增加表面平整性並且同時探討其AIE效應在完全溶解狀態下為低螢光發射,但由於分子內運動(RIM)的限制現象而在聚集時被誘導發射高螢光。其中再搭配三苯胺(TPA)分子其優良的供電子特性、電洞傳輸特性、和氧化能力應用於鈣鈦礦太陽能電池中。
在正(n-i-p)式鈣鈦礦太陽能元件中HHQ-1DA達到15.64%的最高效率,由於其分子平面性有效的增加平整性,也有好的電荷傳輸特性、好的熱穩定性、最佳溶解度、製成元件時成膜性佳,在AFM測試中與HHQ-1B相比擁有最小的缺陷密度,並且擁有最小的暗電流,使效率上升。因此HHQ系列是極具有潛力作為電洞傳輸材料。

Our work describes the design and synthesis of six novel hole-transport materials, each based on the core structures of 10'H-spiro[fluorene-9,9'-phenanthren]-10'-one, tetraphenylethene, and dibenzo[g,p]chrysene, for application in perovskite solar cells. Three different electron-donor structures, namely phenothiazine, triphenylamine, and diphenylamine, were incorporated into the core structures, with attempts made to enhance solubility by attaching alkoxyl chains at the terminals. Among the three core structures, 10'H-spiro[fluorene-9,9'-phenanthren]-10'-one exhibited rigidity, contributing to increased thermal stability and prevention of stacking. The other two cores demonstrated planarity, effectively enhancing surface smoothness. The aggregation-induced emission (AIE) effect was discussed, revealing low fluorescence emission in a fully dissolved state, but induced high fluorescence emission during aggregation due to restricted intramolecular motion (RIM). The incorporation of triphenylamine (TPA) molecules with excellent electron-donating characteristics, hole-transport properties, and oxidation capability was explored for application in perovskite solar cells.

In formal perovskite solar devices, HHQ-1DA achieved a maximum efficiency of 15.64%. This can be attributed to its molecular planarity effectively increasing smoothness, along with favorable charge transport characteristics, good thermal stability, optimal solubility, and excellent film-forming properties during device fabrication. In AFM testing, HHQ-1DA exhibited the smallest defect size compared to HHQ-1B, and it demonstrated the lowest dark current, contributing to the enhanced efficiency. Therefore, the HHQ series is considered highly promising as hole-transport materials.

謝誌 2
摘要 3
Abstract 4
目錄 6
圖目錄 9
表目錄 14
附圖目錄 15
第一章 緒論 16
1-1前言 16
1-2太陽能電池介紹 18
1-3有機太陽能電池 20
1-4鈣鈦礦太陽能電池 22
第二章 鈣鈦礦太陽能元件理論背景說明 25
2-1鈣鈦礦太陽能電池組成結構 25
2-1-1透明導電玻璃 26
2-1-2電子傳輸層 26
2-1-3 鈣鈦礦光敏層 27
2-1-4電洞傳輸層 30
2-2鈣鈦礦太陽能電池工作原理 40
2-3太陽能電池重要參數 41
2-3-1開路電壓 41
2-3-2短路電流Short-Circuit Current, Jsc 42
2-3-3填充因子(Fill Factor, FF) 43
2-3-4光電轉換效率(Power conversion efficiency, PCE, η) 44
2-3-5入射光電流轉換效率(Incident photon to current conversion efficiency, IPCE) 44
2-4正式(n-i-p)鈣鈦礦太陽能電池製程 45
2-4-1 ITO導電玻璃清洗 45
2-4-2 SnO2電子傳輸層的製備 46
2-4-3鈣鈦礦光敏層製備 46
2-4-4電洞傳輸層和金屬電極製備 47
第三章 聚集誘導發光效應Aggregation-Induced Emission (AIE) 簡介 49
第四章 鈣鈦礦太陽能電池文獻回顧與研究動機 54
4-2研究動機 61
第五章 實驗部分 63
5-1 合成流程圖 63
5-2電洞傳輸材料合成及步驟 64
第六章 結果與討論 75
6-1 HHQ系列實驗合成實驗探討 75
6-2理論計算 83
6-3 熱穩定性分析 87
6-4光化學性質 90
6-5電化學性質 92
6-6 AIE效應研究 95
6-7 正式結構的元件特性 101
6-8 薄膜型態研究 109
第七章 結論 114
光譜附圖 115
參考文獻 127

1.https://pse.is/5hdlv3.
2.https://findit.org.tw/researchPageV2.aspx?pageId=2284.
3.REN 21, 2022. Renewables 2022 Global Status Report.
4.https://star-sun.com/wp-content/uploads/2021/02/00897869-1-1030x639.jpg.
5.https://www.pv-magazine.com/2022/11/21/nrel-updates-interactive-chart-of-solar-cell-efficiency/.
6.Gayathri, R. D.; Gokulnath, T.; Park, H.-Y.; Xie, Z.; Jin, S.-H.; Han, S. C.; Lee, J. W. Facile and stable fluorene based organic hole transporting materials for efficient perovskite solar cells. Macromolecular Research 2022, 30 (10), 745-750.
7.Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Il Seok, S.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy 2018, 3 (8), 682-689.
8.https://www.sigmaaldrich.com/TW/en/product/aldrich/792071.
9.Park, J.; Kim, J.; Yun, H.-S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616 (7958), 724-730.
10.Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nature Photonics 2019, 13 (7), 460-466.
11.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society 2009, 131 (17), 6050-6051.
12.https://www.materialsnet.com.tw/DocView.aspx?id=51511.
13.Jo, M.; Bae, S.; Oh, I.; Jeong, J.-h.; Kang, B.; Hwang, S. J.; Lee, S. S.; Son, H. J.; Moon, B.-M.; Ko, M. J. 3d printer-based encapsulated origami electronics for extreme system stretchability and high areal coverage. ACS nano 2019, 13 (11), 12500-12510.
14.https://hdl.handle.net/11296/5vdz6e.
15.Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
16.https://hdl.handle.net/11296/penv99.
17.Marinova, N.; Tress, W.; Humphry-Baker, R.; Dar, M. I.; Bojinov, V.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS nano 2015, 9 (4), 4200-4209.
18.Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.; Zhang, Z.; Xu, H.; Qiu, Y.; Xie, Z. Design of low crystallinity spiro-typed hole transporting material for planar perovskite solar cells to achieve 21.76% efficiency. Chem. Mater. 2020, 33 (1), 285-297.
19.Li, W.; Cariello, M.; Méndez, M.; Cooke, G.; Palomares, E. Self-Assembled Molecules for Hole-Selective Electrodes in Highly Stable and Efficient Inverted Perovskite Solar Cells with Ultralow Energy Loss. ACS A.E.M. 2023, 6 (3), 1239-1247.
20.Lee, J. H.; Ghanem, T.; Sánchez, D. J. P.; Josse, P.; Blanchard, P.; Ahn, H.; Lungerich, D.; Park, N.-G.; Cabanetos, C.; Park, J. H. Enhancing Intermolecular Interaction of Spiro-OMeTAD for Stable Perovskite Solar Cells with Efficiencies over 24%. ACS Energy Lett. 2023, 8 (9), 3895-3901.
21.Luo, Y.; Chitumalla, R. K.; Ham, S.-Y.; Cakan, D. N.; Kim, T.; Paek, S.; Meng, Y. S.; Jang, J.; Fenning, D. P.; Kim, M.-c. A Si-Substituted Spirobifluorene Hole-Transporting Material for Perovskite Solar Cells. ACS Energy Lett. 2023, 8 (12), 5003-5011.
22.Onozawa-Komatsuzaki, N.; Tsuchiya, D.; Inoue, S.; Kogo, A.; Funaki, T.; Chikamatsu, M.; Ueno, T.; Murakami, T. N. Highly Efficient Dopant-Free Cyano-Substituted Spiro-Type Hole-Transporting Materials for Perovskite Solar Cells. ACS A.E.M. 2022, 5 (6), 6633-6641.
23.Muniyasamy, H.; Muthusamy, K.; Chinnamadhaiyan, M.; Sepperumal, M.; Ayyanar, S.; Selvaraj, M. Molecular Design and Cost-Effective Synthesis of Tetraphenylethene-Based Hole-Transporting Materials for Hybrid Solar Cell Application. Energy & Fuels 2022, 36 (7), 3909-3919.
24.Ren, M.; Wang, J.; Xie, X.; Zhang, J.; Wang, P. Double-helicene-based hole-transporter for perovskite solar cells with 22% efficiency and operation durability. ACS Energy Lett., 2019, 4 (11), 2683-2688.
25.Grisorio, R.; Roose, B.; Colella, S.; Listorti, A.; Suranna, G. P.; Abate, A. Molecular tailoring of phenothiazine-based hole-transporting materials for high-performing perovskite solar cells. ACS Energy Lett. 2017, 2 (5), 1029-1034.
26.Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.-C.; Kanatzidis, M. G. Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 2018, 140 (1), 388-393.
27.Liu, Y.; Chen, S.; Lam, J. W.; Lu, P.; Kwok, R. T.; Mahtab, F.; Kwok, H. S.; Tang, B. Z. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater. 2011, 23 (10), 2536-2544.
28.Chen, L.; Jiang, Y.; Nie, H.; Hu, R.; Kwok, H. S.; Huang, F.; Qin, A.; Zhao, Z.; Tang, B. Z. Rational design of aggregation-induced emission luminogen with weak electron donor–acceptor interaction to achieve highly efficient undoped bilayer OLEDs. ACS Appl. Mater. Interfaces 2014, 6 (19), 17215-17225.
29.Lin, G.; Peng, H.; Chen, L.; Nie, H.; Luo, W.; Li, Y.; Chen, S.; Hu, R.; Qin, A.; Zhao, Z. Improving electron mobility of tetraphenylethene-based AIEgens to fabricate nondoped organic light-emitting diodes with remarkably high luminance and efficiency. ACS Appl. Mater. Interfaces 2016, 8 (26), 16799-16808.
30.Chen, Y. C.; Huang, S. K.; Li, S. S.; Tsai, Y. Y.; Chen, C. P.; Chen, C. W.; Chang, Y. J. Facilely Synthesized spiro [fluorene‐9, 9′‐phenanthren‐10′‐one] in Donor–Acceptor–Donor Hole‐Transporting Materials for Perovskite Solar Cells. ChemSusChem 2018, 11 (18), 3225-3233.
31.Chang, Y.-M.; Li, C.-W.; Lu, Y.-L.; Wu, M.-S.; Li, H.; Lin, Y.-S.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J. Spherical hole-transporting interfacial layer passivated defect for inverted NiO x-based planar perovskite solar cells with high efficiency of over 20%. ACS Appl. Mater. Interfaces 2021, 13 (5), 6450-6460.
32.Chiu, Y.-L.; Li, C.-W.; Kang, Y.-H.; Lin, C.-W.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J. Dual-Functional Enantiomeric Compounds as Hole-Transporting Materials and Interfacial Layers in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14 (22), 26135-26147.
33.Zhang, X.; Liu, X.; Ghadari, R.; Li, M.; Zhou, Z. a.; Ding, Y.; Cai, M.; Dai, S. Tetraphenylethylene-arylamine derivatives as hole transporting materials for perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13 (10), 12322-12330.
34.Zhang, X.; Ma, S.; Wu, G.; Liu, X.; Mateen, M.; Ghadari, R.; Wu, Y.; Ding, Y.; Cai, M.; Dai, S. Fused tetraphenylethylene–triphenylamine as an efficient hole transporting material in perovskite solar cells. Chem comm 2020, 56 (21), 3159-3162.
35.Zhu, L.; Shan, Y.; Wang, R.; Liu, D.; Zhong, C.; Song, Q.; Wu, F. High‐Efficiency Perovskite Solar Cells Based on New TPE Compounds as Hole Transport Materials: The Role of 2, 7‐and 3, 6‐Substituted Carbazole Derivatives. Eur. J. Org. Chem. 2017, 23 (18), 4373-4379.
36.Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G. Asymmetric 3D hole-transporting materials based on triphenylethylene for perovskite solar cells. Chem. Mater. 2019, 31 (15), 5431-5441.
37.Liu, X.; Kong, F.; Ghadari, R.; Jin, S.; Yu, T.; Chen, W.; Liu, G.; Tan, Z. a.; Chen, J.; Dai, S. Anthracene–arylamine hole transporting materials for perovskite solar cells. Chem comm 2017, 53 (69), 9558-9561.
38.Paek, S.; Zimmermann, I.; Gao, P.; Gratia, P.; Rakstys, K.; Grancini, G.; Nazeeruddin, M. K.; Rub, M. A.; Kosa, S. A.; Alamry, K. A. Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Chem. Sci. Int. J. 2016, 7 (9), 6068-6075.
39.Zhang, Y.; Mao, H.; Xu, W.; Shi, J.; Cai, Z.; Tong, B.; Dong, Y. Aggregation‐Induced Emission of Multiphenyl‐Substituted 1, 3‐Butadiene Derivatives: Synthesis, Properties and Application. Eur. J. Org. Chem. 2018, 24 (60), 15965-15977.
40.Sun, Z.-Z.; Feng, S.; Ding, W.-L.; Peng, X.-L.; Guan, J.; Zhao, Z. Molecular design of dibenzo [g, p] chrysene-based hole-transporting materials for perovskite solar cells: A theoretical study. Synth Met. 2021, 271, 116631.
41.Chang, Y. J.; Chen, N.-H.; Chen, T. Y.; Shuang, Y. M.; Yen, Y.-S. Enhancing Efficiency and Stability in Perovskite Solar Cells Through Blended Hole Transporting Materials Incorporating Benzo [g] quinoxaline-Conjugated Small Molecules. ACS Appl. Mater. Interfaces. 2024.

電子全文 電子全文(網際網路公開日期:20290215)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊