|
[1] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307–327, 1986. [2] C. Chen and C. Chien. Improving quantile forecasts via realized double hysteretic garch model in stock markets. Computational Economics, (1):1–25, 2024. [3] C. Chen, R. Gerlach, and M. H. Lin. Falling and explosive, dormant and rising markets via multiple-regime financial time series models. SSRN Electronic Journal, 26(1):28–49, 2010. [4] C. W. Chen and M. K. So. On a threshold heteroscedastic model. International Journal of Forecasting, 22(1):73–89, 2006. [5] C. W. Chen and B. C. Truong. On double hysteretic heteroskedastic model. Journal of Probability and Statistics, 86(13):2684–2705, 2016. [6] C. W. Chen, R. Gerlach, and E. M. Lin. Volatility forecasting using threshold heteroskedastic models of the intra-day range. Computational Statistics & Data Analysis, 52(6):2990–3010, 2008. [7] C. W. S. Chen, S. Lee, and K. Khamthong. Bayesian inference of nonlinear hysteretic integer-valued garch models for disease counts. Computational Statistics, 36(1): 261–281, 2021. [8] R. Y. Chou. Forecasting financial volatilities with extreme values: the conditional autoregressive range (carr) model. Journal of Money, Credit and Banking, 37(3): 561–582, 2005. [9] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the econometric society, 50(4):987–1007, 1982. [10] A. Gelman, G. O. Roberts, and W. R. Gilks. Efficient metropolis jumping rules. Bayesian statistics, 5(42):599–608, 1996. [11] J. F. Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. 4:1–21, 1991. [12] L. R. Glosten, R. Jagannathan, and D. E. Runkle. On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance, 48(5):1779–1801, 1993. [13] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109, 1970. [14] G. Li, B. Guan, W. K. Li, and P. L. H. Yu. Hysteretic autoregressive time series models. Biometrika, 102(3):717–723, 2015. [15] D. B. Nelson. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 59(2):347–370, 1991. [16] I. Ratnayake and V. A. Samaranayake. Threshold asymmetric conditional autoregressive range (tacarr) model. arXiv, (1):1–33, 2022. [17] H. Tong. On a threshold model. Empirical Finance, 42:1127–1162, 1978. [18] C. W. G. Zhuanxin Ding and R. F. Engle. A long memory property of stock market returns and a new model. Empirical Finance, 1(1):83–106, 1993.
|