|
[1]Abraham, C., Cornillon, P. A., Matzner‐Løber, E. R. I. C., and Molinari, N. (2003). Unsupervised curve clustering using B‐splines. Scandinavian journal of statistics. 30(3): 581-595. [2]Collaco, J. M., and McGrath-Morrow, S. A. (2018). Respiratory phenotypes for preterm infants, children, and adults: bronchopulmonary dysplasia and more. Annals of the American Thoracic Society. 15(5): 530-538. [3]Faramarzi, R., Darabi, A., Emadzadeh, M., Maamouri, G., and Rezvani, R. (2023). Predicting neurodevelopmental outcomes in preterm infants: A comprehensive evaluation of neonatal and maternal risk factors. Early Human Development. 184: 105834. [4]Figueras-Aloy, J., Palet-Trujols, C., Matas-Barceló, I., Botet-Mussons, F., and Carbonell-Estrany, X. (2020). Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up. European Journal of Pediatrics. 179: 1469-1479. [5]Giacofci, M., Lambert-Lacroix, S., Marot, G., and Picard, F. (2013). Wavelet-based clustering for mixed-effects functional models in high dimension. Biometrics. 69(1): 31-40. [6]Grelli, K. N., Keller, R. L., Rogers, E. E., Partridge, J. C., Xu, D., Barkovich, A. J., and Gano, D. (2021). Bronchopulmonary dysplasia precursors influence risk of white matter injury and adverse neurodevelopmental outcome in preterm infants. Pediatric research. 90(2): 359-365. [7]Hien D. N., Geoffrey J. M., and Ian A. W. (2016). Mixtures of spatial spline regressions for clustering and classification. Computational Statistics and Data Analysis. 93: 76-85. [8]Higgins, R. D., Jobe, A. H., Koso-Thomas, M., Bancalari, E., Viscardi, R. M., Hartert, T. V., ... and Raju, T. N. (2018). Bronchopulmonary dysplasia: executive summary of a workshop. The Journal of pediatrics. 197: 300-308. [9]James, G. M., and Sugar, C. A. (2003). Clustering for Sparsely Sampled Functional Data. Journal of the American Statistical Association. 98(462): 397-408. [10]Kakatsaki, I., Papanikolaou, S., Roumeliotaki, T., Anagnostatou, N. H., Lygerou, I., and Hatzidaki, E. (2023). The prevalence of small for gestational age and extrauterine growth restriction among extremely and very preterm neonates, using different growth curves, and its association with clinical and nutritional factors. Nutrients. 15(15): 3290. [11]Kang, I., Choi, H., Yoon, Y. J., Park, J., Kwon, S. S., and Park, C. (2023). Fréchet distance-based cluster analysis for multi-dimensional functional data. Statistics and Computing, 33(4), 75. [12]Lasky, R. E., and Williams, A. L. (2009). Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics. 123(2): 540-546. [13]Ma, P., and Zhong, W. (2008). Penalized clustering of large-scale functional data with multiple covariates. Journal of the American Statistical Association. 103(482): 625-636. [14]Martínez-Jiménez, M. D., Gómez-García, F. J., Gil-Campos, M., and Pérez-Navero, J. L. (2020). Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: a scoping review. European Journal of Pediatrics. 179: 1255-1265. [15]Nguyen, H. D., Ullmann, J. F., McLachlan, G. J., Voleti, V., Li, W., Hillman, E. M., ... and Janke, A. L. (2018). Whole‐volume clustering of time series data from zebrafish brain calcium images via mixture modeling. Statistical Analysis and Data Mining: The ASA Data Science Journal. 11(1): 5-16. [16]Norman, M., Jonsson, B., Söderling, J., Björklund, L. J., and Håkansson, S. (2023). Patterns of respiratory support by gestational age in very preterm infants. Neonatology. 120(1): 142-152. [17]Northway Jr, W. H., Rosan, R. C., and Porter, D. Y. (1967). Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia. New England Journal of Medicine. 276(7): 357-368. [18]Ray, S., and Mallick, B. (2006). Functional clustering by Bayesian wavelet methods. Journal of the Royal Statistical Society Series B: Statistical Methodology. 68(2): 305-332. [19]Shennan, A. T., Dunn, M. S., Ohlsson, A., Lennox, K., and Hoskins, E. M. (1988). Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 82(4): 527-532. [20]Suarez, A. J., and Ghosal, S. (2016). Bayesian clustering of functional data using local features. Bayesian Analysis. 11(1): 71-98. [21]Tarpey, T., and Kinateder, K. K. (2003). Clustering functional data. Journal of classification. 20(1): 93-114. [22]Tarpey, T. (2007). Linear transformations and the k-means clustering algorithm: applications to clustering curves. The American statistician. 61(1): 34-40. [23]Yu, W. H., Chu, C. H., Lin, Y. C., Chen, R. B., Iwata, O., and Huang, C. C. (2022). Early‐life respiratory trajectories and neurodevelopmental outcomes in infants born very and extremely preterm: A retrospective study. Developmental Medicine & Child Neurology. 64(10): 1246-1253.
|