|
1.歐盟個人資料保護規則本文部分(https://www.jcic.org.tw/) Accessed December 29, 2023. 2.歐洲一般資料保護法規 (GDPR) - 對於影像監控的意義(https://www.axis.com/) Accessed January 12, 2024. 3.加州消費者隱私保護法(CCPA)規範重點說明(https://ws.ndc.gov.tw/) Accessed February 4, 2024. 4.關於保護健康和心理健康資訊的 HIPAA 隱私規則(https://omh.ny.gov/) Accessed January 20, 2024 5.Wijesinghe, P., & Dholakia, K. (2021). Emergent physics-informed design of deep learning for microscopy. Journal of Physics: Photonics, 3(2), 021003. 6.Aljeraisy, A., Barati, M., Rana, O., & Perera, C. (2021). Privacy laws and privacy by design schemes for the internet of things: A developer’s perspective. ACM Computing Surveys (Csur), 54(5), 1-38. 7.Silva, P., Gonçalves, C., Antunes, N., Curado, M., & Walek, B. (2022). Privacy risk assessment and privacy-preserving data monitoring. Expert Systems with Applications, 200, 116867. 8.Nield, J., Scanlan, J., & Roehrer, E. (2020). Exploring consumer information-security awareness and preparedness of data-breach events. Library Trends, 68(4), 611-635. 9.Voigt, P., & Von dem Bussche, A. (2017). The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676), 10-5555 10.Talbot, P. W., Rabiti, C., Alfonsi, A., Krome, C., Kunz, M. R., Epiney, A., ... & Mandelli, D. (2020). Correlated synthetic time series generation for energy system simulations using Fourier and ARMA signal processing. International Journal of Energy Research, 44(10), 8144-8155. 11.Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A., Hosseinzadeh, M., & Ali Naqvi, R. (2021). Machine learning (ML) in medicine: Review, applications, and challenges. Mathematics, 9(22), 2970. 12.Taherkhani, K., Ero, O., Liravi, F., Toorandaz, S., & Toyserkani, E. (2023). On the application of in-situ monitoring systems and machine learning algorithms for developing quality assurance platforms in laser powder bed fusion: A review. Journal of Manufacturing Processes, 99, 848-897. 13.Wang, H., Dong, G., Chen, J., Hu, X., & Zhu, Z. (2023). A novel dictionary learning named deep and shared dictionary learning for fault diagnosis. Mechanical Systems and Signal Processing, 182, 109570. 14.Alammar, Z., Alzubaidi, L., Zhang, J., Li, Y., Lafta, W., & Gu, Y. (2023). Deep transfer learning with enhanced feature fusion for detection of abnormalities in x-ray images. Cancers, 15(15), 4007. 15.Xiang, A. (2022). Being'Seen'vs.'Mis-Seen': Tensions between Privacy and Fairness in Computer Vision. Harvard Journal of Law & Technology, 36(1). 16.Joshi, I., Grimmer, M., Rathgeb, C., Busch, C., Bremond, F., & Dantcheva, A. (2024). Synthetic data in human analysis: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 17.El Emam, K., Mosquera, L., & Hoptroff, R. (2020). Practical synthetic data generation: balancing privacy and the broad availability of data. O'Reilly Media. 18.Asghar, M. N., Kanwal, N., Lee, B., Fleury, M., Herbst, M., & Qiao, Y. (2019). Visual surveillance within the EU general data protection regulation: A technology perspective. IEEE Access, 7, 111709-111726. 19.Wood, E., Baltrušaitis, T., Hewitt, C., Dziadzio, S., Cashman, T. J., & Shotton, J. (2021). Fake it till you make it: face analysis in the wild using synthetic data alone. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3681-3691). 20.Dinur, E. (2017). The Filmmaker's Guide to Visual Effects: The Art and Techniques of VFX for Directors, Producers, Editors, and Cinematographers. 21.Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR. 22.Robert Williams. "Opinion I was wrongfully arrested because of facial recognition. Why are police allowed to use it? " The Washington Post. 2020. 23.Chandra, T. B., & Dwivedi, A. K. (2022). Data visualization: existing tools and techniques. In Advanced data mining tools and methods for social computing (pp. 177-217). Academic Press. 24.Arteaga, P., Batanero, C., Contreras, J. M., & Cañadas, G. R. (2012). Understanding statistical graphs: a research survey. Boletín de Estadística e Investigación Operativa, 28(3), 261-277. 25.Wang, Y., Han, F., Zhu, L., Deussen, O., & Chen, B. (2017). Line graph or scatter plot? automatic selection of methods for visualizing trends in time series. IEEE transactions on visualization and computer graphics, 24(2), 1141-1154. 26.Lewandowsky, S., & Spence, I. (1989). The perception of statistical graphs. Sociological Methods & Research, 18(2-3), 200-242. 27.Perikova, E. I., Filippova, M. G., Makarova, D. N., & Gnedykh, D. S. (2023). THE LABELING BENEFIT IN FAST MAPPING AND EXPLICIT ENCODING. IP Pavlov Journal of Higher Nervous Activity, 73(6), 749-763. 28.Lin, Z., Ding, G., Hu, M., & Wang, J. (2014, June). Multi-label classification via feature-aware implicit label space encoding. In International conference on machine learning (pp. 325-333). PMLR. 29.Raju, V. G., Lakshmi, K. P., Jain, V. M., Kalidindi, A., & Padma, V. (2020, August). Study the influence of normalization/transformation process on the accuracy of supervised classification. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 729-735). IEEE. 30.Misra, P., & Yadav, A. S. (2019, March). Impact of preprocessing methods on healthcare predictions. In Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE). 31.Aldi, F., Hadi, F., Rahmi, N. A., & Defit, S. (2023). Standardscaler's Potential in Enhancing Breast Cancer Accuracy Using Machine Learning. Journal of Applied Engineering and Technological Science (JAETS), 5(1), 401-413. 32.Becher, J. D., Berkhin, P., & Freeman, E. (2000, August). Automating exploratory data analysis for efficient data mining. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 424-429). 33.Mienye, I. D., & Sun, Y. (2022). A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access, 10, 99129-99149. 34.Polikar, R. (2012). Ensemble learning. Ensemble machine learning: Methods and applications. Cham: Springer. 35.Leon, F., Floria, S. A., & Bădică, C. (2017, July). Evaluating the effect of voting methods on ensemble-based classification. In 2017 IEEE international conference on INnovations in intelligent Systems and applications (INISTA) (pp. 1-6). IEEE. 36.Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. 37.Sevim, S., Omurca, S. I., & Ekinci, E. (2021, October). Improving accuracy of document image classification through soft voting ensemble. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering (pp. 161-173). Cham: Springer International Publishing. 38.Mohammed, A., & Kora, R. (2023). A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University-Computer and Information Sciences, 35(2), 757-774.
|