|
1.Bae, J. K., & Kim, J. (2011). Product development with data mining techniques: A case on design of digital camera. Expert Systems with Applications, 38(8), 9274-9280. 2.Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123. 3.Berlyne, D. E. (1970). Novelty, complexity, and hedonic value. Perception & psychophysics, 8(5), 279-286. 4.Biswas, S. (2023). Role of Chat GPT in Education. Available at SSRN 4369981. 5.Boone Jr, H. N., & Boone, D. A. (2012). Analyzing likert data. The Journal of extension, 50(2), 48. 6.Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Eval. Ind., 189. 7.Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. 8.Chen, J.-S., Wang, K.-C., & Liang, J.-C. (2008). A hybrid kansei design expert system using artificial intelligence. PRICAI 2008: Trends in Artificial Intelligence: 10th Pacific Rim International Conference on Artificial Intelligence, Hanoi, Vietnam, December 15-19, 2008. Proceedings 10, 9.Chomsky, N. (2002). Syntactic Structures (Second Edition ed.). De Gruyter Mouton. https://doi.org/doi:10.1515/9783110218329 10.Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. 11.Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334. 12.Crowson, K. (2022). k-diffusion. https://github.com/crowsonkb/k-diffusion 13.Dahlquist, G. (1958). Stability and error bounds in the numerical integration of ordinary differential equations Almqvist & Wiksell]. 14.Design Council. (2005). Eleven lessons: managing design in eleven global brands 15.Design Council. (2007). Eleven lessons: managing design in eleven global companies 16.Dinar, M., Shah, J. J., Cagan, J., Leifer, L., Linsey, J., Smith, S. M., & Hernandez, N. V. (2015). Empirical Studies of Designer Thinking: Past, Present, and Future. Journal of Mechanical Design, 137(2). https://doi.org/10.1115/1.4029025 17.Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y., Lorenz, D., Sauer, A., & Boesel, F. (2024). Scaling rectified flow transformers for high-resolution image synthesis. arXiv preprint arXiv:2403.03206. 18.Euler, L. (1761). Principia motus fluidorum. Novi commentarii academiae scientiarum Petropolitanae, 271-311. 19.Füller, J., & Matzler, K. (2007). Virtual product experience and customer participation—A chance for customer-centred, really new products. Technovation, 27(6), 378-387. 20.Field, A. (2013). Discovering statistics using IBM SPSS statistics. sage. 21.Fortune Media. (2023). Fortune Global 500. https://fortune.com/ranking/global500/2022/ 22.Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27. 23.Gropius, W. (1975). The Theory and Organisation of the Bauhaus, 1923. 24.Heaton, J. (2018). Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press, 2016, 800 pp, ISBN: 0262035618. Genetic programming and evolvable machines, 19(1-2), 305-307. 25.Henrici, P. (1962). Discrete variable methods in ordinary differential equations. New York: Wiley. 26.Hermann, M., Pentek, T., & Otto, B. (2016, 5-8 Jan. 2016). Design Principles for Industrie 4.0 Scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS), 27.Heun, K. (1900). Neue Methoden zur approximativen Integration der Differentialgleichungen einer unabhängigen Veränderlichen. Z. Math. Phys, 45, 23-38. 28.Ho, J., Chen, X., Srinivas, A., Duan, Y., & Abbeel, P. (2019). Flow++: Improving flow-based generative models with variational dequantization and architecture design. International Conference on Machine Learning, 29.Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851. 30.Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv:2106.09685. Retrieved June 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv210609685H 31.Hung, W.-K., & Chen, L.-L. (2012). Effects of novelty and its dimensions on aesthetic preference in product design. International Journal of Design, 6(2), 81-90. 32.ICSID. (1959). Icsid Constitution. Retrieved September 4 from https://wdo.org/about/definition/industrial-design-definition-history/ 33.ICSID. (2006). Industrial Design. Retrieved September 4 from https://wdo.org/glossary/industrial-design/ 34.Jasperneite, J. (2012). Was hinter Begriffen wie Industrie 4.0 steckt. 35.Jianjun, H., Yao, Y., Hameed, J., Kamran, H. W., Nawaz, M. A., Aqdas, R., & Patwary, A. K. (2021). The role of artificial and nonartificial intelligence in the new product success with moderating role of new product innovation: a case of manufacturing companies in China. Complexity, 2021, 1-14. 36.Jin, J., Liu, Y., Ji, P., & Kwong, C. K. (2019). Review on recent advances in information mining from big consumer opinion data for product design. Journal of Computing and Information Science in Engineering, 19(1), 010801. 37.Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2nd Edition). Prentice-Hall, Inc. 38.Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. 39.Karras, T., Aittala, M., Aila, T., & Laine, S. (2022). Elucidating the design space of diffusion-based generative models. Advances in neural information processing systems, 35, 26565-26577. 40.Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. 41.Klintong, N., Vadhanasindhu, P., & Thawesaengskulthai, N. (2012). Artificial intelligence and successful factors for selecting product innovation development. 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 42.Kumar, V. (2012). 101 design methods : a structured approach for driving innovation in your organization. John Wiley & Sons Inc. Hoboken, New Jersey. 43.Li, J., Li, D., Xiong, C., & Hoi, S. (2022). Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. International Conference on Machine Learning, 44.Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology. 45.Loshchilov, I., & Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983. 46.Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., & Zhu, J. (2022a). Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural information processing systems, 35, 5775-5787. 47.Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., & Zhu, J. (2022b). Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095. 48.Lun, Z., Kalogerakis, E., & Sheffer, A. (2015). Elements of style: learning perceptual shape style similarity. ACM Transactions on graphics (TOG), 34(4), 1-14. 49.McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12. 50.Mishchenko, K., & Defazio, A. (2023). Prodigy: An expeditiously adaptive parameter-free learner. arXiv preprint arXiv:2306.06101. 51.Mordor Intelligence Research & Advisory. (2023). Digital Light Processing (DLP) Projector Market Size & Share Analysis - Growth Trends & Forecasts (2023 - 2028). Mordor Intelligence. https://www.mordorintelligence.com/industry-reports/dlp-projector-market 52.Nüßgen, A., Degen, R., Irmer, M., Richter, F., Boström, C., & Ruschitzka, M. (2024). Leveraging Robust Artificial Intelligence for Mechatronic Product Development: A Literature Review. International Journal of Intelligence Science, 14(01), 1-21. 53.Norman, D. A. (2002). The Design of Everyday Things. Basic Books, Inc. 54.Nunnally, J., & Bernstein, I. (1994). Psychometric Theory 3rd edition (MacGraw-Hill, New York). In. 55.Nunnally, J. D. (1978). Psychometric Theory (2nd ed), New York: McGraw-Hill. 56.Open AI. (2024). Hello GPT-4o. https://openai.com/index/hello-gpt-4o/ 57.Quan, H., Li, S., & Hu, J. (2018). Product innovation design based on deep learning and Kansei engineering. Applied Sciences, 8(12), 2397. 58.Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., & Clark, J. (2021). Learning transferable visual models from natural language supervision. International conference on machine learning, 59.Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 60.Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. 61.Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9. 62.Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 63.Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. Advances in neural information processing systems, 29. 64.Sauro, J. (2011). A Practical Guide to the System Usability Scale: Background, Benchmarks & Best Practices. Measuring Usability LLC. https://books.google.com.tw/books?id=BL0kKQEACAAJ 65.Shen, D., Wu, G., & Suk, H. I. (2017). Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng, 19, 221-248. 66.Sihombing, H., Yuhazri, M., Yahaya, S., & Syaifoelida, F. (2013). The kansei design characteristics towards learning style. Journal of Engineering, 2013(1), 584656. 67.Simon, H. A. (1996). The sciences of the artificial. MIT press. 68.Sissie Hsiao. (2024). Get more done with Gemini: Try 1.5 Pro and more intelligent features. https://blog.google/products/gemini/google-gemini-update-may-2024/#context-window 69.Smith, P. G., & Reinertsen, D. G. (1998). Developing products in half the time: new rules, new tools. Van Nostrand Reinhold New York. 70.Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. International conference on machine learning, 71.Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. Advances in neural information processing systems, 32. 72.Stanford d.school. (2015). An Introduction to Design Thinking - PROCESS GUIDE. 73.Tullis, T., & Stetson, J. (2006). A Comparison of Questionnaires for Assessing Website Usability. 74.Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 59(236), 433-460. 75.Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. 76.Villaumbrosia, C. G. D. (2023). Top 18 AI Tools for Product Managers and Product Teams. https://productschool.com/blog/artificial-intelligence/ai-tools-for-product-managers 77.Vlahogianni, E., Karlaftis, M., & Golias, J. (2014). Short-term traffic forecasting: Where we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43. 78.Wang, H.-H., Lin, Y.-Y., & Huang, H.-T. (2023). Application of Typicality in Predicting Product Appearance. Engineering Proceedings, 55(1), 66. 79.Wang, H.-H., Liu, C.-K., & Yu, S.-B. (2023). Predicting Consumer Preferences by the Deformation Threshold of Product Appearance. Engineering Proceedings, 55(1), 67. 80.Weng, L. (2021). What are Diffusion Models? https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 81.White, T. (2016). Sampling generative networks. arXiv preprint arXiv:1609.04468. 82.Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International journal of production research, 56(8), 2941-2962. 83.Xu, Y., Deng, M., Cheng, X., Tian, Y., Liu, Z., & Jaakkola, T. (2023). Restart sampling for improving generative processes. Advances in neural information processing systems, 36, 76806-76838. 84.Yi, J., Nasukawa, T., Bunescu, R., & Niblack, W. (2003, 22-22 Nov. 2003). Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. Third IEEE International Conference on Data Mining, 85.Zhang, L., & Agrawala, M. (2023). Adding Conditional Control to Text-to-Image Diffusion Models. arXiv:2302.05543. Retrieved February 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv230205543Z 86.Zhao, W., Bai, L., Rao, Y., Zhou, J., & Lu, J. (2024). Unipc: A unified predictor-corrector framework for fast sampling of diffusion models. Advances in neural information processing systems, 36. 87.周文賢. (2002). 多變量統計分析: SAS/STAT使用方法. 智勝文化事業有限公司. 88.陳文印. (1997). 設計解讀 : 工業設計專業知能之探索 (初版. ed.). 亞太圖書出版社.
|