跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:眭惟棟
研究生(外文):HSU, WEI-TUNG
論文名稱:利用聚乙二醇二縮水甘油醚製備水凝膠超級電容
論文名稱(外文):Hydrogel-based supercapacitor prepared by crosslinking of poly(ethylene glycol) diglycidyl ether
指導教授:鄭國忠鄭國忠引用關係
指導教授(外文):CHENG, KUO-CHUNG
口試委員:韓錦鈴曾勝茂郭志宇鄭國忠
口試委員(外文):HAN, JIN-LINTSENG, SHENG-MAOKUO, CHIH-YUCHENG, KUO-CHUNG
口試日期:2024-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:149
中文關鍵詞:水凝膠電解質環氧樹脂聚乙二醇二縮水甘油醚化學誘發相分離法超級電容
外文關鍵詞:hydrogel electrolyteepoxy resinpoly(ethylene glycol) diglycidyl etherchemically induced phase separationsupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用含聚乙二醇(PEG)的樹脂透過化學誘導相分離法製備水凝膠超級電容。使用聚乙二醇二丙烯酸酯(PEGDA)和聚乙二醇二缩水甘油醚(PEGDE),藉由調整環氧樹脂與溶劑的比例,探討不同水凝膠電解質的電解液吸收率、離子導電度(σ)與比電容值(Cs)。PEGDA製備水凝膠薄膜浸泡於1M H2SO4電解液,在30°C離子導電度為47 mS/cm,比電容值為123 F/g。PEGDE製備的水凝膠電解質在30°C離子導電度為117 mS/cm,比電容值為136 F/g。
Hydrogel-based supercapacitors were prepared using poly(ethylene glycol)-based resins, such as polyethylene glycol diacrylate (PEGDA) and poly(ethylene glycol) diglycidyl ether (PEGDE), through a chemically induced phase separation method. By adjusting the ratio of resin to solvent, the study investigated the liquid electrolyte uptake, ionic conductivity (σ), and specific capacitance (Cs) of different hydrogel electrolytes. It was found that the hydrogel-based supercapacitors made from PEGDA film soaked in 1M H2SO4 exhibited an ionic conductivity of approximately 47 mS/cm and a specific capacitance of 123 F/g at 30°C. For the PEGDE-based hydrogels, the ionic conductivity reached approximately 117 mS/cm, and the specific capacitance increased to 136 F/g at 30°C.
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 viii
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 相關理論與文獻回顧 3
2.1 超級電容器簡介及分類 3
2.2 碳材料用於超級電容 5
2.2.1 活性碳 5
2.2.2 碳黑 5
2.3 超級電容電解液種類 6
2.3.1 水溶液電解質 7
2.3.2 有機溶液電解質 7
2.3.3 離子溶液電解質 7
2.4 凝膠電解質(GPE) 8
2.5 環氧樹脂之簡介 9
2.6 環氧樹脂與三級胺類之硬化反應機構 11
2.7 幾丁聚醣(Chitosan) 13
2.8 化學誘發相分離(Chemically-Induced Phase Seperation,CIPS) 14
2.9 類神經網路(Artificial Neural Network) 19
2.9.1 類神經網路簡介 19
2.9.2 類神經網路結構 20
2.10 類神經網路架構 21
2.10.1 前饋神經網路 21
第三章 實驗方法 23
3.1 實驗藥品 23
3.2 實驗儀器 33
3.3 電極基材 36
3.4 實驗流程及步驟 37
3.4.1 實驗流程 37
3.4.2 活性碳電極之製作 37
3.4.3 水凝膠電解質之製作 39
3.4.4 環氧樹脂水凝膠電解質之製作 40
3.5 高分子電解液吸收率 46
3.6 離子導電度之量測 47
3.7 循環伏安法(Cyclic Voltammetry, CV) 49
3.8 掃描式電子顯微鏡(SEM) 52
第四章 結果與討論 53
4.1 浸泡不同電解液探討水凝膠電解質之電化學性質 53
4.1.1 水凝膠電解質選擇與電解液種類 53
4.1.2 電解液吸收率 54
4.1.3 離子導電度 55
4.1.4 比電容值 57
4.2 以不同環氧樹脂製備水凝膠電解質 58
4.2.1 薄膜形態分析 58
4.2.2 電解液吸收率 59
4.2.3 離子導電度 60
4.2.4 比電容值 62
4.3 以PEGDE環氧樹脂製備水凝膠電解質 63
4.3.1 薄膜形態分析 63
4.3.2 電解液吸收率 64
4.3.3 離子導電度 66
4.3.4 比電容值 68
4.4 以PEGDE/BGE製備水凝膠電解質 69
4.4.1 薄膜形態分析 69
4.4.2 電解液吸收率 70
4.4.3 離子導電度 71
4.4.4 比電容值 73
4.5 以PEGDE製備水凝膠浸泡不同電解液 74
4.5.1 電解液吸收率與離子導電度 75
4.5.2 比電容值與循環穩定測試 76
4.6 以PEGDE/Chitosan製備水凝膠電解質 77
4.6.1 電解液吸收率與離子導電度 78
4.6.2 比電容值 79
第五章 結論 110
未來工作 111
參考文獻 112
附錄 117
A.1 E系列 PEGDA水凝膠電解質之CV圖 117
A.2 R系列 環氧樹脂水凝膠電解質之CV圖 120
A.3 P系列 PEGDE水凝膠電解質之CV圖 122
A.4 PB系列 PEGDE/BGE水凝膠電解質之CV圖 126
A.5 H系列 PEGDE水凝膠不同電解液之CV圖 128
A.6 類神經網路訓練過程及擬合 135
A.6.1資料來源與彙整 136
A.6.2訓練過程 136
A.6.3類神經網路之擬合 138
A.7 水凝膠電解質之類神經網路擬合結果 140
A.7.1 離子導電度擬合 140
A.7.2 比電容值擬合 141
1.Dong, W., et al., Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering: R: Reports, 2023. 152.
2.Kim, B.K., et al., Electrochemical Supercapacitors for Energy Storage and Conversion, in Handbook of Clean Energy Systems. 2015. p. 1-25.
3.彭佑宇, 蒲., 傅勇銘,劉益銘,葛明德, 石墨烯及其複合材料應用於超級電容之研究. Journal of Technology, 2014. 29: p. 187-192.
4.Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015. 44(21): p. 7484-539.
5.Bhat, T.S., P.S. Patil, and R.B. Rakhi, Recent trends in electrolytes for supercapacitors. Journal of Energy Storage, 2022. 50.
6.Pal, B., et al., Polymer versus Cation of Gel Polymer Electrolytes in the Charge Storage of Asymmetric Supercapacitors. Industrial & Engineering Chemistry Research, 2018. 58(2): p. 654-664.
7.A. Lewandowski, M.Z., E. Fra˛ckowiak ,F. Be´guin Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 2001.
8.Ma, G., et al., High performance solid-state supercapacitor with PVA–KOH–K3[Fe(CN)6] gel polymer as electrolyte and separator. Journal of Power Sources, 2014. 256: p. 281-287.
9.Peng, S., et al., High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte. Electrochimica Acta, 2019. 324.
10.Yu, H., et al., Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochimica Acta, 2011. 56(20): p. 6881-6886.
11.Hassan, M.F. and A.K. Arof, Ionic conductivity in PEO‐KOH polymer electrolytes and electrochemical cell performance. physica status solidi (a), 2005. 202(13): p. 2494-2500.
12.N. Krishna Jyothi, M.G.K., V. Naveen Kumar, B. Nageswara Rao, SL. Prasanna D., K. Vijaya Kumar, MC. Rao Structural and impedance analysis of PAN-based Na+ ion conducting gel polymer electrolytes for energy storage device application. Materials Today: Proceedings, 2022. 51.
13.Prasadini, W., K. S. Perera, and K. P. Vidanapathirana, Performance of Zn/Graphite rechargeable cells with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate based gel polymer electrolyte. AIMS Energy, 2018. 6(4): p. 566-575.
14.Jung Yup Lima, D.A.K., Na Un Kima, Jung Min Leeb, Jong Hak Kim, Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength. Journal of Membrane Science, 2019. 589.
15.Chodankar, N.R., et al., Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J Colloid Interface Sci, 2015. 460: p. 370-6.
16.謝齊峰, 多孔性碳材料於電容去離子和逆向電容去離子系統之工 作電位範圍探討, in 化學工程. 2017, 國立清華大學: 新竹.
17.Ngai, K.S., et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016. 22(8): p. 1259-1279.
18.莊杰龍, 具有活性碳/碳黑複合網狀電極之垂直流電容去離子模組, in 環境工程研究所. 2016, 國立交通大學: 新竹.
19.Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27.
20.Pandey, G.P. and S.A. Hashmi, Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate based gel polymer electrolyte and modified MWCNT electrodes. Electrochimica Acta, 2013. 105: p. 333-341.
21.Xu, Y., et al., Structural supercapacitor composites: A review. Composites Science and Technology, 2021. 204.
22.Zhu, J., et al., Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes. Journal of Energy Storage, 2020. 32.
23.Sung, J. and C. Shin, Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines (Basel), 2020. 11(12).
24.M Natalia, Y.N.S.M.S., Activated carbon derived from natural sources and electrochemical capacitance of double layer capacitor. Indian Journal of Chemical Technology, 2013. 20: p. 392-399.
25.國際中橡碳黑事業. 碳黑簡介. 2023.
26.邱俊凱, 氧化還原添加劑固態電解質於超級電容器之應用, in 電子研究所. 2019, 國立交通大學: 新竹.
27.林冠宇, 添加二氧化鈦於膠態電解液以提升柔性超級電容器儲能能, in 化學工程. 2021, 國立台北科技大學: 台北市.
28.陳亦丞, 電解質中對苯二酚和對苯二胺雙氧化還原添加劑對活性碳超級電容器氧化還原行為研究, in 化學工程與生物科技系化學工程. 2018, 國立台北科技大學: 台北市.
29.王柏欣, 固定離子於水膠電解質之高性能超級電容器研究, in 化學工程. 2021, 國立成功大學: 台南市.
30.何治圻, 雙離子在碳電極的超級電容表現, in 化學工程. 2022, 國立成功大學: 台南.
31.羅丞廷, 以活化之碳材與親水性高分子黏著劑於超級電容器電極製備及應用, in 化學研究所. 2014, 國立成功大學: 台南市.
32.王柏欣, 光固化高分子離子液體離子液體作為固態電解質應用於超級電容器, in 化學工程及材料工程學系. 2017, 國立高雄大學: 高雄.
33.Mukta Tripathi, S.M.B., Anuj Kumar Nanocomposite polymer gel with dispersed alumina as an efficient electrolyte for application in supercapacitors. Journal of Physics and Chemistry of Solids, 2021. 152.
34.Lazzari, M., Arbizzani, Catia, Soavi, Francesca, Mastragostino, Marina, EDLCs Based on Solvent-Free Ionic Liquids, in Supercapacitors: Materials, Systems, and Applications, P.E.F. Prof. François Béguin, Editor. 2013. p. 289-306.
35.Ding, P., et al., Polymer electrolytes and interfaces in solid-state lithium metal batteries. Materials Today, 2021. 51: p. 449-474.
36.Jingwei Wang , G.C., **, Shenhua Song Na-ion conducting gel polymer membrane for flexible supercapacitor application. Electrochimica Acta, 2020. 330.
37.Shrishti Sharma , M.D.S., Anshuman Dalvi, All-solid-state electric double layer supercapacitors using Li1.3Al0.3Ti1.7(PO4)3 reinforced solid polymer electrolyte. Journal of Energy Storage, 2022. 49.
38.Xu, Y., Lin, Z., Huang, X., Liu, Y., Huang, Y., & Duan, X., Flexible Solid-State Supercapacitors Based on Three-Dimensional Graphene Hydrogel Films. ACS nano, 2013.
39.賴耿陽編著, 環氧樹脂應用實務. 1999: 復漢出版社.
40.王春山, 「環氧樹脂簡介與最近的發展(一)」, in 化工技術. 1994. p. 54-57.
41.Xia Dong, A.G., and David M. Hercules, Characterization of polysiloxanes with different functional groups by time-of-flight secondary ion mass spectrometry. Journal of the American Society for Mass Spectrometry 1998(9): p. 292-298.
42.魏光麟, 聚矽氧烷/聚氨基甲酸酯複合材料塗佈於聚醯胺織物其耐候性改善之研究, in 紡織工程所. 2006, 逢甲大學: 台中.
43.陳錦鈴, 環氧樹脂及聚胺酯交聯環氧樹脂之研究, in 材料科學工程研究所. 1993, 國立臺灣大學: 台北.
44.Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632.
45.Aziz, S.B., et al., Structural, Impedance, and EDLC Characteristics of Proton Conducting Chitosan-Based Polymer Blend Electrolytes with High Electrochemical Stability. Molecules, 2019. 24(19).
46.Kadir, M.F.Z., and A. K. Arof., Application of PVA–chitosan blend polymer electrolyte membrane in electrical double layer capacitor. Materials Research Innovations, 2011. 15(sup2): p. s217-s220.
47.Kiefer, J., Hedrick, J. L., & Hilborn, J. G., Macroporous thermosets by chemically induced phase separation. Macromolecular Architectures, 1999: p. 161-247.
48.陳之傑, 活性碳電極於電容去離子技術的電化學特性與脫鹽能力之研究, in 環境工程. 2016, 國立台灣大學: 台北市.
49.柯皓中, 具活性碳/碳黑複合電極之正流式電容去離子系統及其操作效能與穩定性分析., in 環境工程. 2018, 國立交通大學: 新竹.
50.Yadav, N., et al., High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon. Journal of Power Sources, 2018. 402: p. 133-146.
51.Aziz, S.B., et al., Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number. Results in Physics, 2019. 15.
52.Bhat, M.Y., N. Yadav, and S.A. Hashmi, A high performance flexible gel polymer electrolyte incorporated with suberonitrile as additive for quasi-solid carbon supercapacitor. Materials Science and Engineering: B, 2020. 262.
53.Guoqiang Li, X.Z., Min Sang, Xuan Wang, Danying Zuo, Jing Xu, Hongwei Zhang, A supramolecular hydrogel electrolyte for high-performance supercapacitors. Journal of Energy Storage, 2021. 33.
54.Redda, H.G., et al., Enhancing the electrochemical performance of a flexible solid-state supercapacitor using a gel polymer electrolyte. Materials Today Communications, 2021. 26.
55.S. Shenbagavalli, M.M., M.S. Revathy, Electrical properties of Mg2+ ion-conducting PEO: P(VdF-HFP) based solid blend polymer electrolytes. Polymer, 2022. 256.
56.Md. Yasir Bhat, S.A.H., Mixture of non-ionic and organic ionic plastic crystals immobilized in poly (vinylidene fluoride-co-hexafluoropropylene): A flexible gel polymer electrolyte composition for high performance carbon supercapacitors. Journal of Energy Storage, 2022. 51.
57.Ohhyun Kwon1, J.K., Seohyeon Jang, Seyoung Choi, Hojong Eom, Junhyeop Shin, Jong-Kwon Park, Soomin Park, Inho Nam, Synthesizing a Gel Polymer Electrolyte for Supercapacitors, Assembling a Supercapacitor Using a Coin Cell, and Measuring Gel Electrolyte Performance. Journal of Visualized Experiments, 2022.
58.Choi, S.L.a.U.H., High Ion Conducting Dobule Network Crosslinked Gel Polymer Electrolytes for High-Performance Supercapacitors. Macromolecular Chemistry and Physics, 2023.
59.Sadiq, N.M., et al., Chitosan as a suitable host for sustainable plasticized nanocomposite sodium ion conducting polymer electrolyte in EDLC applications: Structural, ion transport and electrochemical studies. Int J Biol Macromol, 2024. 265(Pt 1): p. 130751.
60.張斐章, 張., 類神經網路. 2007: 東華書局.
61.陳信希, 郭., 李傑, 人工智慧導論. 2019: 全華圖書股份有限公司.
62.Borah, S., J.K. Sarmah, and M. Deka, Understanding uptake kinetics and ion dynamics in microporous polymer gel electrolytes reinforced with SiO2 nanofibers. Materials Science and Engineering: B, 2021. 273.
63.Eishun TSUCHIDA *, H.O., Koichi TSUNEMI and Norihisa KOBAYASHI, Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate. Solid State Ionics, 1983. 11: p. 227-233.
64.Jang, E.-S., et al., Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) Diacrylate.1. Ion sorption. Polymer, 2019. 178.
65.Lu, D.-L., et al., Investigations on the properties of Li3xLa2/3-xTiO3 based all-solid-state supercapacitor: Relationships between the capacitance, ionic conductivity, and temperature. Journal of the European Ceramic Society, 2020. 40(6): p. 2396-2403.
66.Yuan, J.-J., et al., A lithiated gel polymer electrolyte with superior interfacial performance for safe and long-life lithium metal battery. Journal of Energy Chemistry, 2021. 55: p. 313-322.
67.呂明怡, 新型高分子電解質之合成與性質探討, in 化學研究所. 2004, 國立中央大學: 桃園縣.
68.El Knidri, H., et al., Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol, 2018. 120(Pt A): p. 1181-1189.
電子全文 電子全文(網際網路公開日期:20290722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top