跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡妤軒
研究生(外文):CHIEN, YU-HSUAN
論文名稱:應用於假牙基底床之3D列印丙烯酸共聚物機械性質的研究
論文名稱(外文):Mechanical properties of 3D-printed acrylic copolymer for denture base application
指導教授:鄭國忠鄭國忠引用關係
指導教授(外文):CHENG, KUO-CHUNG
口試委員:李伯訓董崇民韓錦鈴
口試委員(外文):LEE, BOR-SHIUNNDON, TRONG-MINGHAN, JIN-LING
口試日期:2024-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:116
中文關鍵詞:超分枝聚胺基甲酸酯丙烯酸酯數位光處理3D列印後固化假牙基底聚合物
外文關鍵詞:hyperbranched polyurethane acrylateDLP 3D printingpost-curingdenture base polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用三羥基單體(B3)、二異氰酸酯(A2)和含羥基丙烯酸酯(BR)的混合物,經由逐步聚合法合成超分枝聚胺基甲酸酯丙烯酸酯(HBPUAs,編號為TIH4)。接著,將合成的TIH4與三環癸二甲醇二丙烯酸酯(TCDDMDA)和光起始劑2,4,6-三甲基苯甲醯二苯基磷氧化物(TPO)混合。使用數位光處理(DLP)3D列印機在405 nm光源下列印樣品。後固化則是以溫控光固化機(Form Cure)在60°C下後固化30分鐘。樹脂以重量比9:1 (TCDDMDA:TIH4) 的比例混合所列印的樣品,在水中浸泡50小時後,測得的撓曲強度和模數分別為101.1 MPa和2.57 GPa。實驗結果機械性質皆符合ISO 20795-1假牙基底聚合物的標準。此外,合成的樹脂與商業樹脂相比表現出更低的吸水率(12.05μg/mm³)與更強的抗斷裂應力。
A hyperbranched polyurethane acrylate (HBPUAs, coded as TIH4) was synthesized via stepwise polymerization using a mixture of a tri-hydroxyl monomer (B3), diisocyanate (A2),and a hydroxyl-containing acrylate (BR). This synthesized TIH4 resin was then mixed with tricyclodecane dimethanol diacrylate (TCDDMDA) and a photoinitiator,2,4,6-trimethylbenzoyl diphenyl phosphine oxide (TPO). Samples were printed using a digital light
processing (DLP) 3D printer under a 405 nm light source. Post-curing was performed using a temperature-controllable light-curing machine (Form cure). For the sample printed using the blended resin at a weight ratio of 9:1 (TCDDMDA:TIH4), post-cured at 60°C for 30 minutes
and then soaked in water for 50 hours, the flexural strength and modulus were approximately 101.1 MPa and 2.57 GPa, respectively. These properties met the ISO 20795-1 standards for denture base polymers.Additionally, the synthesized resin exhibited a lower water absorption rate of 12.05 μg/mm³ and higher resistance to fracture stress compared to the commercial resin.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 超分支高分子結構與特性 4
2.2 聚胺酯丙烯酸酯結構與特性 5
2.3 數位光源處理系統(DLP) 6
2.4 光起始劑反應原理與種類 10
2.5 光硬化樹酯 11
2.5.1 光硬化樹酯成分 11
2.5.2 光硬化牙科樹酯特性 11
2.5.3 光起始劑TPO之介紹 14
2.6 3D列印參數設定 17
2.7 後固化 17
2.8 丙烯酸酯雙鍵轉化率 21
2.9 義齒假牙基底床之ISO規範介紹 24
第三章 實驗方法 27
3.1 實驗藥品 27
3.2 實驗儀器 33
3.3 實驗流程 37
3.4 超分枝聚胺酯丙烯酸樹脂之合成 38
3.5 合成之HBPUAs性質分析與測量方法 40
3.5.1 凝膠滲透色層分析儀 (GPC) 40
3.5.2 衰減全反射式傅立葉轉換紅外線光譜儀(ATR-FTIR) 40
3.6 3D列印參數設定與樣品測試 41
3.6.1 3D列印參數與後固化參數設定 41
3.6.2 收縮率測試(Shrinkage) 43
3.6.3 吸水率與溶出率測試(Water Sorption and Solubility) 43
3.6.4 三點彎曲測試 (Three-point Bending Test) 44
3.6.5 應力鬆弛實驗 (Stress Relaxation Test) 45
3.6.6 斷裂韌性實驗 (Fracture toughness Test) 46
3.6.7 丙烯酸脂雙鍵轉化率測試 47
3.7 統計分析 47
第四章 結果與討論 48
4.1 超分枝聚胺基甲酸酯丙烯酸酯合成 48
4.1.1 HBPUA分子量測量 49
4.1.2 傅立葉轉換紅外線光譜儀(FTIR)分析 51
4.2 收縮率測試 54
4.2.1 Phrozen cure後固化 54
4.2.2 Form cure後固化 56
4.3 吸水率與溶出率測試 59
4.4 三點彎曲測試 62
4.4.1 Phrozen cure後固化 62
4.4.2 Form cure後固化 64
4.5 應力鬆弛測試 71
4.5.1 Phrozen cure後固化 71
4.5.2 Form cure後固化 71
4.5.3 Kohlrausch-Williams-Watts (KWW) 73
4.6 斷裂韌性測試 78
4.7 丙烯酸酯雙鍵轉化率 82
第五章 結論 87
未來工作 88
參考文獻 89
附錄 93

1.Altarazi, A., et al., Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent Mater, 2022. 38(12): p. 1841-1854.
2.Al-Dwairi, Z.N., A.A. Al Haj Ebrahim, and N.Z. Baba, A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). Journal of Prosthodontics, 2023. 32(1): p. 40-48.
3.Tian, Y., et al., A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning, 2021. 2021: p. 9950131.
4.Zheng, Y., et al., Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev, 2015. 44(12): p. 4091-130.
5.Das, A. and P. Mahanwar, A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 2020. 3(3): p. 93-101.
6.Maurya, S.D., et al., A Review on Acrylate-Terminated Urethane Oligomers and Polymers: Synthesis and Applications. Polymer-Plastics Technology and Engineering, 2017. 57(7): p. 625-656.
7.Liao, F., et al., Synthesis and properties of UV curable polyurethane acrylates based on two different hydroxyethyl acrylates. Journal of Central South University, 2012. 19(4): p. 911-917.
8.Ngo, T.D., et al., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 2018. 143: p. 172-196.
9.Voet, V.S.D., J. Guit, and K. Loos, Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromolecular Rapid Communications, 2021. 42(3).
10.Lim, W.-B., et al., A novel UV-curable acryl-polyurethane for flexural 3D printing architectures. Additive Manufacturing, 2022. 51.
11.Raszewski, Z., et al., Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. J Funct Biomater, 2022. 14(1).
12.Lee, S., et al., The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 2021. 26.
13.Rosace, G., et al., Photosensitive acrylates containing bio-based epoxy-acrylate soybean oil for 3D printing application. Journal of Applied Polymer Science, 2021. 138(44).
14.Tzeng, J.J., et al., Mechanical Properties and Biocompatibility of Urethane Acrylate-Based 3D-Printed Denture Base Resin. Polymers (Basel), 2021. 13(5).
15.Shi, S., C. Croutxé-Barghorn, and X. Allonas, Photoinitiating systems for cationic photopolymerization: Ongoing push toward long wavelengths and low light intensities. Progress in Polymer Science, 2017. 65: p. 1-41.
16.Allen, N.S., Photoinitiators for UV and visible curing of coatings: Mechanisms and properties. Journal of Photochemistry and Photobiology A: Chemistry, 1996. 100(1-3): p. 101-107.
17.Decker, C., Photoinitiated crosslinking polymerisation. Progress in Polymer Science, 1996. 21(4): p. 593-650.
18.Srivastava, R., et al., BisGMA analogues as monomers and diluents for dental restorative composite materials. Materials Science and Engineering: C, 2018. 88: p. 25-31.
19.Meereis, C.T.W., et al., Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of composition strategies. Journal of the Mechanical Behavior of Biomedical Materials, 2018. 82: p. 268-281.
20.Ranganathan, A., et al., Effect of novel cycloaliphatic comonomer on the flexural and impact strength of heat-cure denture base resin. Journal of Oral Science, 2021. 63(1): p. 14-17.
21.GABI TOPO, et al., Mechanical Properties of Bis-GMA/HEMA Resin Composite with Addition of Silicon Dioxide Nanoparticles. Materiale Plastice, 2021.
22.Amiri, P., et al., Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers. J Mater Sci Mater Med, 2021. 32(7): p. 82.
23.Kowalska, A., J. Sokolowski, and K. Bociong, The Photoinitiators Used in Resin Based Dental Composite-A Review and Future Perspectives. Polymers (Basel), 2021. 13(3).
24.Pivesso, B.P., et al., 3D printed dental protheses using TPO-initiated photopolymerization. Effect of the photoinitiator concentration and the use of a UV-blocker. Polymer-Plastics Technology and Materials, 2023. 62(4): p. 433-442.
25.Kowalska, A., et al., Can TPO as Photoinitiator Replace "Golden Mean" Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide. Int J Mol Sci, 2022. 23(19).
26.Lara, L., et al., Effect of combining photoinitiators on cure efficiency of dental resin-based composites. J Appl Oral Sci, 2021. 29: p. e20200467.
27.de Oliveira, D.C.R.S., et al., Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Journal of Dentistry, 2015. 43(12): p. 1565-1572.
28.Schneider, L.F., et al., Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide. Dent Mater, 2012. 28(4): p. 392-7.
29.Sandro Barone, et al., Development of a DLP 3D printer for orthodontic applications. 2019.
30.Aati, S., et al., Effect of post-curing light exposure time on the physico–mechanical properties and cytotoxicity of 3D-printed denture base material. Dental Materials, 2022. 38(1): p. 57-67.
31.Dai, J., et al., Post-processing of DLP-printed denture base polymer: Impact of a protective coating on the surface characteristics, flexural properties, cytotoxicity, and microbial adhesion. Dental Materials, 2022. 38(12): p. 2062-2072.
32.Li, P., et al., Postpolymerization of a 3D-printed denture base polymer: Impact of post-curing methods on surface characteristics, flexural strength, and cytotoxicity. Journal of Dentistry, 2021. 115: p. 103856.
33.Bagis, Y.H. and F.A. Rueggeberg, The effect of post-cure heating on residual, unreacted monomer in a commercial resin composite. Dental Materials, 2000. 16(4): p. 244-247.
34.Soto-Montero, J., et al., Color alterations, flexural strength, and microhardness of 3D printed resins for fixed provisional restoration using different post-curing times. Dental Materials, 2022. 38(8): p. 1271-1282.
35.Zirak, N., et al., Stereolithography of (meth)acrylate-based photocurable resin: Thermal and mechanical properties. Journal of Applied Polymer Science, 2022. 139(22): p. 52248.
36.Jindal, P., et al., Effects of post-curing conditions on mechanical properties of 3D printed clear dental aligners. Rapid Prototyping Journal, 2020. 26(8): p. 1337-1344.
37.Alifui-Segbaya, F., et al., Characterization of the double bond conversion of acrylic resins for 3D printing of dental prostheses. Compendium, 2019. 40(10): p. e7-e11.
38.Altarazi, A., et al., 3D printed denture base material: The effect of incorporating TiO(2) nanoparticles and artificial ageing on the physical and mechanical properties. Dent Mater, 2023. 39(12): p. 1122-1136.
39.Dantagnan, C.A., et al., Degree of conversion of 3D printing resins used for splints and orthodontic appliances under different postpolymerization conditions. Clin Oral Investig, 2023. 27(6): p. 2935-2942.
40.Aati, S., et al., Effect of post-curing light exposure time on the physico-mechanical properties and cytotoxicity of 3D-printed denture base material. Dent Mater, 2022. 38(1): p. 57-67.
41.Al-Hamdan, R.S., et al., Influence of Hydroxyapatite Nanospheres in Dentin Adhesive on the Dentin Bond Integrity and Degree of Conversion: A Scanning Electron Microscopy (SEM), Raman, Fourier Transform-Infrared (FTIR), and Microtensile Study. Polymers (Basel), 2020. 12(12).
42.Dimitrova, M., et al., Evaluation of Water Sorption and Solubility of 3D-Printed, CAD/CAM Milled, and PMMA Denture Base Materials Subjected to Artificial Aging. Journal of Composites Science, 2023. 7(8).
43.Al-Qarni, F.D. and M.M. Gad, Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials (Basel), 2022. 15(7).
44.Gad, M.M., et al., Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J Prosthodont, 2022. 31(5): p. 412-418.
45.Alhotan, A., et al., Assessing Fracture Toughness and Impact Strength of PMMA Reinforced with Nano-Particles and Fibre as Advanced Denture Base Materials. Materials (Basel), 2021. 14(15).
46.Khan, A.A., et al., Mechanical Properties of the Modified Denture Base Materials and Polymerization Methods: A Systematic Review. Int J Mol Sci, 2022. 23(10).
47.Albertini, P., et al., Stress Relaxation Properties of Five Orthodontic Aligner Materials: A 14-Day In-Vitro Study. Bioengineering (Basel), 2022. 9(8).
48.Meereis, C.T.W., et al., Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of composition strategies. J Mech Behav Biomed Mater, 2018. 82: p. 268-281.
49.Liu, D., et al., Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin. J Mater Sci Mater Med, 2013. 24(6): p. 1595-603.
50.Jiang, T., et al., Study of Forming Performance and Characterization of DLP 3D Printed Parts. Materials (Basel), 2023. 16(10).
51.Yang, Y., et al., Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics, 2020. 12(3).
52.Zhao, M., et al., 3D-printed strong hybrid materials with low shrinkage for dental restoration. Composites Science and Technology, 2021. 213.
53.Shen, M., et al., Effects of exposure time and printing angle on the curing characteristics and flexural strength of ceramic samples fabricated via digital light processing. Ceramics International, 2020. 46(15): p. 24379-24384.
54.Steyrer, B., et al., Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins. Materials (Basel), 2017. 10(12).
55.Schiavi, A. and A. Prato, Evidences of non-linear short-term stress relaxation in polymers. Polymer Testing, 2017. 59: p. 220-229.
56.Reis, P.N.B., M.P. Silva, and P. Santos, Stress Relaxation in Delaminated Carbon/Epoxy Composites. Fibers and Polymers, 2019. 20(6): p. 1284-1289.

電子全文 電子全文(網際網路公開日期:20290722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊