跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃岳群
研究生(外文):HUANG, YUEH-CHUN
論文名稱:共軛高分子結構設計應用於非揮發性記憶體與人工突觸神經元件
論文名稱(外文):Conjugated Polymer Structure Design for Non-Volatile Memory and Artificial Synapses
指導教授:李文亞
指導教授(外文):LEE, WEN-YA
口試委員:李文亞闕居振羅承慈
口試委員(外文):LEE, WEN-YACHUEH, CHU-CHENLO, CHEN-TSYR
口試日期:2024-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:105
中文關鍵詞:電晶體奈米懸浮閘極記憶體共軛聚合物奈米顆粒自修復材料人工突觸
外文關鍵詞:TransistorNano-floating gate memoriesConjugated Polymer NanoparticlesSelf-healing MaterialsArtificial Synapse
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT iii
誌謝 vi
目錄 viii
表目錄 xi
圖目錄 xii
第一章 導論 1
1.1 前言 1
1.2 有機半導體材料 2
1.2.1 高分子材料特性 3
1.2.2 導電高分子原理 4
1.3 有機場效應電晶體 7
1.3.1 有機場效應電晶體的運作原理與結構 8
1.3.2 有機場效應電晶體的電性特徵 12
1.4 非揮發性電晶體式記憶體 15
1.4.1 非揮發性電晶體式記憶體結構和運作原理 16
1.4.2 場效電晶體型記憶體的分類 19
1.4.3 於非揮發性有機電晶體記憶體的奈米結構材料 21
1.4.4 非揮發性電晶體式記憶體重要參數 28
1.5 神經元突觸電晶體 30
1.5.1 生物神經系統 31
1.5.2 人工突觸元件 32
1.6 自修復高分子系統 33
1.6.1 拉伸元件技術分析 34
1.6.2 自修復高分子材料與反應機制 40
1.7 研究動機 44
第二章 實驗方法 45
2.1 實驗藥品與材料 45
2.2 實驗設備 46
2.3 有機薄膜電晶體 47
2.3.1 晶圓前處理與表面修飾 47
2.3.2 利用旋轉塗布製成製備介電層 48
2.3.3 半導體層不同的製備方式 49
2.3.4 熱蒸鍍以及元件電性質測量 51
2.4 非揮發性記憶體之量測 53
2.5 神經元突觸電晶體量測 54
2.5.1 成對脈衝促進率(Pair-Pulse Facilitation, PPF) 54
2.5.2 長期增益效應(Long-Term Potentiation, LTP) 55
2.5.3 長期抑制效應(Long-Term Depression, LTD) 55
2.6 有機薄膜半導體之拉伸自修復方式 56
2.6.1 高分子彈性材料PDMS的製備 56
2.6.2 拉伸與轉印 56
2.6.3 光誘導自修復方式 57
第三章 P型奈米顆粒材料之具有突觸行為的非揮發性記憶 59
3.1 簡介 59
3.2 奈米顆粒高分子之電晶體分析 61
3.2.1 不同材料電容之影響 61
3.2.2 不同材料對電性質之影響 62
3.3 奈米顆粒高分子之表面分析 65
3.3.1 AFM原子力顯微鏡表面形貌分析 65
3.3.2 TEM穿透式電子顯微鏡內部結構分析 68
3.4 奈米顆粒高分子之記憶體分析 69
3.4.1 不同材料對記憶視窗之影響 69
3.4.2 不同材料對電荷保存時間之影響 71
3.4.3 不同材料對循環穩定性之影響 73
3.5 奈米顆粒高分子之神經元分析 76
3.6 結論 79
第四章 N型光誘導自修復材料之電晶體式記憶體 80
4.1 簡介 80
4.2 自修復系統之反應機制 81
4.3 自修復高分子之電晶體元件分析 82
4.4 自修復高分子之表面分析 86
4.5 自修復高分子之記憶體分析 88
4.5.1 修復前後對記憶視窗之影響 88
4.5.2 復前後對循環穩定性之影響 90
4.6 自修復高分子之神經元分析 91
4.7 結論 96
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 98
參考文獻 100

1.Günay, K.A., P. Theato, and H.A. Klok, Standing on the shoulders of Hermann Staudinger: Post‐polymerization modification from past to present. J. Polym. Sci., Part A: Polym. Chem., 2013. 51(1): p. 1-28.
2.Anthony, J.E., The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed., 2008. 47(3): p. 452-483.
3.Cai, Z., et al., Exploration of syntheses and functions of higher ladder-type π-conjugated heteroacenes. Chem, 2018. 4(11): p. 2538-2570.
4.Baraban, J.H., et al., The Molecular Structure of gauche‐1, 3‐Butadiene: Experimental Establishment of Non‐planarity. Angew. Chem. Int. Ed., 2018. 57(7): p. 1821-1825.
5.Chen, J., et al., The influence of side chains on the structures and properties of functionalized pentacenes. J. Mater. Chem., 2008. 18(17): p. 1961-1969.
6.Havinga, E., W. Ten Hoeve, and H. Wynberg, Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines. Synth. Met., 1993. 55(1): p. 299-306.
7.Li, J., et al., A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep., 2012. 2(1): p. 754.
8.Ibeh, C.C., Thermoplastic materials: properties, manufacturing methods, and applications. 2011: CRC Press.
9.You, I., M. Kong, and U. Jeong, Block copolymer elastomers for stretchable electronics. Acc. Chem. Res., 2018. 52(1): p. 63-72.
10.Jaiswal, M. and R. Menon, Polymer electronic materials: a review of charge transport. Polym. Int., 2006. 55(12): p. 1371-1384.
11.Van Mullekom, H., et al., Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater. Sci. Eng.: R: Rep., 2001. 32(1): p. 1-40.
12.Facchetti, A., Semiconductors for organic transistors. Mater. Today, 2007. 10(3): p. 28-37.
13.Klauk, H., Organic thin-film transistors. Chem. Soc. Rev., 2010. 39(7): p. 2643-2666.
14.Kim, S.-J. and J.-S. Lee, Flexible organic transistor memory devices. Nano Lett., 2010. 10(8): p. 2884-2890.
15.Lu, C., et al., Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly (tetrathienoacene‐diketopyrrolopyrrole) polymers. Adv. Electron. Mater., 2017. 3(2): p. 1600311.
16.Osaka, I. and K. Takimiya, Backbone orientation in semiconducting polymers. Polymer, 2015. 59: p. A1-A15.
17.Kanimozhi, C., et al., Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out? Physical Chemistry Chemical Physics, 2014. 16(32): p. 17253-17265.
18.Kim, D., et al., Body-Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices. Advanced Materials (Deerfield Beach, Fla.), 2015. 28(4): p. 748-756.
19.Jeong, S.H., et al., PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater., 2016. 28(28): p. 5830-5836.
20.Lee, W.-Y., J. Mei, and Z. Bao, OFETs: Basic concepts and material designs, in THE WSPC REFERENCE ON ORGANIC ELECTRONICS: ORGANIC SEMICONDUCTORS: Fundamental Aspects of Materials and Applications. 2016, World Scientific. p. 19-83.
21.Yang, Y.C., et al., Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett., 2009. 9(4): p. 1636-1643.
22.Lee, M.J., et al., Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater., 2007. 19(22): p. 3919-3923.
23.Jung, J.-H., et al., Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer. Appl. Phys. Lett., 2006. 88(11).
24.Baeg, K.J., et al., Polarity effects of polymer gate electrets on non‐volatile organic field‐effect transistor memory. Adv. Funct. Mater., 2008. 18(22): p. 3678-3685.
25.Chiu, Y.-C., et al., High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. ACS Appl. Mater. Interfaces, 2014. 6(15): p. 12780-12788.
26.Baeg, K.J., et al., Controllable shifts in threshold voltage of top‐gate polymer field‐effect transistors for applications in organic nano floating gate memory. Adv. Funct. Mater., 2010. 20(2): p. 224-230.
27.Hsu, J.-C., et al., Nonvolatile memory based on pentacene organic field-effect transistors with polystyrene para-substituted oligofluorene pendent moieties as polymer electrets. J. Mater. Chem., 2012. 22(12): p. 5820-5827.
28.Naber, R.C., et al., High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater., 2005. 4(3): p. 243-248.
29.Chang, H.C., C.L. Liu, and W.C. Chen, Flexible nonvolatile transistor memory devices based on One‐Dimensional electrospun P3HT: Au hybrid nanofibers. Adv. Funct. Mater., 2013. 23(39): p. 4960-4968.
30.Zhang, L., et al., Large-area, flexible imaging arrays constructed by light-charge organic memories. Sci. Rep., 2013. 3(1): p. 1080.
31.Lu, C., W.-Y. Lee, and W.-C. Chen, Manipulation of electrical characteristics of non-volatile transistor-type memory devices through the acceptor strength of donor–acceptor conjugated copolymers. J. Mater. Chem. C, 2016. 4(24): p. 5702-5708.
32.Shih, C.-C., W.-Y. Lee, and W.-C. Chen, Nanostructured materials for non-volatile organic transistor memory applications. Mater. Horiz., 2016. 3(4): p. 294-308.
33.Tang, X., et al., Energy-band engineering for improved charge retention in fully self-aligned double floating-gate single-electron memories. Nano Lett., 2011. 11(11): p. 4520-4526.
34.Lee, J.-S., Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem., 2011. 21(37): p. 14097-14112.
35.Schroeder, R., L.A. Majewski, and M. Grell, All‐organic permanent memory transistor using an amorphous, spin‐cast ferroelectric‐like gate insulator. Adv. Mater., 2004. 16(7): p. 633-636.
36.Ling, Q.-D., et al., Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci., 2008. 33(10): p. 917-978.
37.Lee, J.-S., Recent progress in gold nanoparticle-based non-volatile memory devices. Gold Bull., 2010. 43: p. 189-199.
38.Kang, M., et al., Printed, flexible, organic nano‐floating‐gate memory: Effects of metal nanoparticles and blocking dielectrics on memory characteristics. Adv. Funct. Mater., 2013. 23(28): p. 3503-3512.
39.Leong, W.L., et al., Towards printable organic thin film transistor based flash memory devices. J. Mater. Chem., 2011. 21(14): p. 5203-5214.
40.Kim, S.-J., et al., Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers. Appl. Phys. Lett., 2010. 96(3).
41.Lee, J.-S., et al., Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat. Nanotechnol., 2007. 2(12): p. 790-795.
42.Zhan, Y., Y. Mei, and L. Zheng, Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C, 2014. 2(7): p. 1220-1232.
43.Han, S.T., et al., Layer‐by‐layer‐assembled reduced graphene oxide/gold nanoparticle hybrid double‐floating‐gate structure for low‐voltage flexible flash memory. Adv. Mater., 2013. 6(25): p. 872-877.
44.Kanoun, M., et al., Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications. Appl. Phys. Lett., 2004. 84(25): p. 5079-5081.
45.Pal, B.N., et al., Solution‐Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility n‐Channel, Ambipolar, and Nonvolatile Devices. Adv. Funct. Mater., 2008. 18(12): p. 1832-1839.
46.Hirschmann, J., H. Faber, and M. Halik, Concept of a thin film memory transistor based on ZnO nanoparticles insulated by a ligand shell. Nanoscale, 2012. 4(2): p. 444-447.
47.Kim, B.J., et al., Organic field‐effect transistor memory devices using discrete ferritin nanoparticle‐based gate dielectrics. Small, 2013. 9(22): p. 3784-3791.
48.Jung, J.H., et al., High‐performance flexible organic nano‐floating gate memory devices functionalized with cobalt ferrite nanoparticles. Small, 2015. 11(37): p. 4976-4984.
49.Park, W.I., et al., Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano, 2013. 7(3): p. 2651-2658.
50.Chen, C.-M., et al., A nanostructured micellar diblock copolymer layer affects the memory characteristics and packing of pentacene molecules in non-volatile organic field-effect transistor memory devices. J. Mater. Chem. C, 2013. 1(12): p. 2328-2337.
51.Leong, W.L., et al., Non‐volatile organic memory applications enabled by in situ synthesis of gold nanoparticles in a self‐assembled block copolymer. Adv. Mater., 2008. 20(12): p. 2325-2331.
52.Wei, Q., et al., Additive-driven assembly of block copolymer–nanoparticle hybrid materials for solution processable floating gate memory. ACS Nano, 2012. 6(2): p. 1188-1194.
53.Chiu, Y.C., et al., High‐Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar‐based Block Copolymers and Their Supramolecules. Adv. Funct. Mater., 2014. 24(27): p. 4240-4249.
54.Lo, C.T., et al., Donor–Acceptor Core–Shell Nanoparticles and Their Application in Non‐Volatile Transistor Memory Devices. Macromol. Rapid Commun., 2019. 40(12): p. 1900115.
55.Chou, Y.-H., et al., Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem., 2015. 6(3): p. 341-352.
56.Sadoon, T., Classification of medical images based on deep learning network (CNN) for both brain tumors and covid-19. Diss. Ministry of Higher Education, 2021.
57.Yang, L., et al., Transparent and flexible inorganic perovskite photonic artificial synapses with dual‐mode operation. Adv. Funct. Mater., 2021. 31(6): p. 2008259.
58.李文亞, 仿神經型態電子元件: 軟性人工突觸電晶體. 化工, 2021. 68(1): p. 82-93.
59.Feng, L., et al., All-solution-processed low-voltage organic thin-film transistor inverter on plastic substrate. IEEE Trans. Electron Devices, 2014. 61(4): p. 1175-1180.
60.Kim, D.H. and J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater., 2008. 20(24): p. 4887-4892.
61.Lee, S., et al., Development of high-performance organic thin-film transistors for large-area displays. MRS Bull., 2006. 31(6): p. 455-459.
62.Someya, T., et al., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proceedings of the National Academy of Sciences, 2005. 102(35): p. 12321-12325.
63.Rogers, J.A., et al., like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences, 2001. 98(9): p. 4835-4840.
64.Chortos, A., J. Liu, and Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater., 2016. 15(9): p. 937-950.
65.Lacour, S.P., et al., Stretchable interconnects for elastic electronic surfaces. Proc. IEEE, 2005. 93(8): p. 1459-1467.
66.Hsu, P., et al., Spherical deformation of compliant substrates with semiconductor device islands. J. Appl. Phys., 2004. 95(2): p. 705-712.
67.Spaepen, F., Interfaces and stresses in thin films. Acta Mater., 2000. 48(1): p. 31-42.
68.Pashley, D.W., A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1960. 255(1281): p. 218-231.
69.Sun, Y. and J.A. Rogers, Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics. J. Mater. Chem., 2007. 17(9): p. 832-840.
70.Kaltenbrunner, M., et al., An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013. 499(7459): p. 458-463.
71.Hecht, D.S., L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater., 2011. 23(13): p. 1482-1513.
72.Lee, P., et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater., 2012. 24(25): p. 3326-3332.
73.Dang, C., et al., Achieving large uniform tensile elasticity in microfabricated diamond. Science, 2021. 371(6524): p. 76-78.
74.Yang, D., et al., A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder. J. Appl. Phys., 2013. 114(15).
75.Wang, S., et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018. 555(7694): p. 83-88.
76.White, S.R., et al., Autonomic healing of polymer composites. Nature, 2001. 409(6822): p. 794-797.
77.Toohey, K.S., et al., Self-healing materials with microvascular networks. Nat. Mater., 2007. 6(8): p. 581-585.
78.Oh, J.Y., et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016. 539(7629): p. 411-415.
79.Chen, X., et al., A thermally re-mendable cross-linked polymeric material. Science, 2002. 295(5560): p. 1698-1702.
80.Claus, T.K., et al., Light-driven reversible surface functionalization with anthracenes: visible light writing and mild UV erasing. Chem. Commun., 2017. 53(10): p. 1599-1602.
81.Yan, Q.-Y., et al., Shear-Enhanced Stretchable Polymer Semiconducting Blends for Polymer-based Field-Effect Transistors. Macromol. Res., 2020. 28(7): p. 660-669.
82.Yu, T.-F., et al., Solution-processable anion-doped conjugated polymer for nonvolatile organic transistor memory with synaptic behaviors. ACS Appl. Mater. Interfaces, 2020. 12(30): p. 33968-33978.
83.Jiang, J., et al., 2D MoS2 neuromorphic devices for brain‐like computational systems. Small, 2017. 13(29): p. 1700933.


電子全文 電子全文(網際網路公開日期:20290711)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top