|
1.Günay, K.A., P. Theato, and H.A. Klok, Standing on the shoulders of Hermann Staudinger: Post‐polymerization modification from past to present. J. Polym. Sci., Part A: Polym. Chem., 2013. 51(1): p. 1-28. 2.Anthony, J.E., The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed., 2008. 47(3): p. 452-483. 3.Cai, Z., et al., Exploration of syntheses and functions of higher ladder-type π-conjugated heteroacenes. Chem, 2018. 4(11): p. 2538-2570. 4.Baraban, J.H., et al., The Molecular Structure of gauche‐1, 3‐Butadiene: Experimental Establishment of Non‐planarity. Angew. Chem. Int. Ed., 2018. 57(7): p. 1821-1825. 5.Chen, J., et al., The influence of side chains on the structures and properties of functionalized pentacenes. J. Mater. Chem., 2008. 18(17): p. 1961-1969. 6.Havinga, E., W. Ten Hoeve, and H. Wynberg, Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines. Synth. Met., 1993. 55(1): p. 299-306. 7.Li, J., et al., A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep., 2012. 2(1): p. 754. 8.Ibeh, C.C., Thermoplastic materials: properties, manufacturing methods, and applications. 2011: CRC Press. 9.You, I., M. Kong, and U. Jeong, Block copolymer elastomers for stretchable electronics. Acc. Chem. Res., 2018. 52(1): p. 63-72. 10.Jaiswal, M. and R. Menon, Polymer electronic materials: a review of charge transport. Polym. Int., 2006. 55(12): p. 1371-1384. 11.Van Mullekom, H., et al., Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater. Sci. Eng.: R: Rep., 2001. 32(1): p. 1-40. 12.Facchetti, A., Semiconductors for organic transistors. Mater. Today, 2007. 10(3): p. 28-37. 13.Klauk, H., Organic thin-film transistors. Chem. Soc. Rev., 2010. 39(7): p. 2643-2666. 14.Kim, S.-J. and J.-S. Lee, Flexible organic transistor memory devices. Nano Lett., 2010. 10(8): p. 2884-2890. 15.Lu, C., et al., Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly (tetrathienoacene‐diketopyrrolopyrrole) polymers. Adv. Electron. Mater., 2017. 3(2): p. 1600311. 16.Osaka, I. and K. Takimiya, Backbone orientation in semiconducting polymers. Polymer, 2015. 59: p. A1-A15. 17.Kanimozhi, C., et al., Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out? Physical Chemistry Chemical Physics, 2014. 16(32): p. 17253-17265. 18.Kim, D., et al., Body-Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices. Advanced Materials (Deerfield Beach, Fla.), 2015. 28(4): p. 748-756. 19.Jeong, S.H., et al., PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater., 2016. 28(28): p. 5830-5836. 20.Lee, W.-Y., J. Mei, and Z. Bao, OFETs: Basic concepts and material designs, in THE WSPC REFERENCE ON ORGANIC ELECTRONICS: ORGANIC SEMICONDUCTORS: Fundamental Aspects of Materials and Applications. 2016, World Scientific. p. 19-83. 21.Yang, Y.C., et al., Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett., 2009. 9(4): p. 1636-1643. 22.Lee, M.J., et al., Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater., 2007. 19(22): p. 3919-3923. 23.Jung, J.-H., et al., Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer. Appl. Phys. Lett., 2006. 88(11). 24.Baeg, K.J., et al., Polarity effects of polymer gate electrets on non‐volatile organic field‐effect transistor memory. Adv. Funct. Mater., 2008. 18(22): p. 3678-3685. 25.Chiu, Y.-C., et al., High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. ACS Appl. Mater. Interfaces, 2014. 6(15): p. 12780-12788. 26.Baeg, K.J., et al., Controllable shifts in threshold voltage of top‐gate polymer field‐effect transistors for applications in organic nano floating gate memory. Adv. Funct. Mater., 2010. 20(2): p. 224-230. 27.Hsu, J.-C., et al., Nonvolatile memory based on pentacene organic field-effect transistors with polystyrene para-substituted oligofluorene pendent moieties as polymer electrets. J. Mater. Chem., 2012. 22(12): p. 5820-5827. 28.Naber, R.C., et al., High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater., 2005. 4(3): p. 243-248. 29.Chang, H.C., C.L. Liu, and W.C. Chen, Flexible nonvolatile transistor memory devices based on One‐Dimensional electrospun P3HT: Au hybrid nanofibers. Adv. Funct. Mater., 2013. 23(39): p. 4960-4968. 30.Zhang, L., et al., Large-area, flexible imaging arrays constructed by light-charge organic memories. Sci. Rep., 2013. 3(1): p. 1080. 31.Lu, C., W.-Y. Lee, and W.-C. Chen, Manipulation of electrical characteristics of non-volatile transistor-type memory devices through the acceptor strength of donor–acceptor conjugated copolymers. J. Mater. Chem. C, 2016. 4(24): p. 5702-5708. 32.Shih, C.-C., W.-Y. Lee, and W.-C. Chen, Nanostructured materials for non-volatile organic transistor memory applications. Mater. Horiz., 2016. 3(4): p. 294-308. 33.Tang, X., et al., Energy-band engineering for improved charge retention in fully self-aligned double floating-gate single-electron memories. Nano Lett., 2011. 11(11): p. 4520-4526. 34.Lee, J.-S., Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem., 2011. 21(37): p. 14097-14112. 35.Schroeder, R., L.A. Majewski, and M. Grell, All‐organic permanent memory transistor using an amorphous, spin‐cast ferroelectric‐like gate insulator. Adv. Mater., 2004. 16(7): p. 633-636. 36.Ling, Q.-D., et al., Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci., 2008. 33(10): p. 917-978. 37.Lee, J.-S., Recent progress in gold nanoparticle-based non-volatile memory devices. Gold Bull., 2010. 43: p. 189-199. 38.Kang, M., et al., Printed, flexible, organic nano‐floating‐gate memory: Effects of metal nanoparticles and blocking dielectrics on memory characteristics. Adv. Funct. Mater., 2013. 23(28): p. 3503-3512. 39.Leong, W.L., et al., Towards printable organic thin film transistor based flash memory devices. J. Mater. Chem., 2011. 21(14): p. 5203-5214. 40.Kim, S.-J., et al., Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers. Appl. Phys. Lett., 2010. 96(3). 41.Lee, J.-S., et al., Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat. Nanotechnol., 2007. 2(12): p. 790-795. 42.Zhan, Y., Y. Mei, and L. Zheng, Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C, 2014. 2(7): p. 1220-1232. 43.Han, S.T., et al., Layer‐by‐layer‐assembled reduced graphene oxide/gold nanoparticle hybrid double‐floating‐gate structure for low‐voltage flexible flash memory. Adv. Mater., 2013. 6(25): p. 872-877. 44.Kanoun, M., et al., Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications. Appl. Phys. Lett., 2004. 84(25): p. 5079-5081. 45.Pal, B.N., et al., Solution‐Deposited Zinc Oxide and Zinc Oxide/Pentacene Bilayer Transistors: High Mobility n‐Channel, Ambipolar, and Nonvolatile Devices. Adv. Funct. Mater., 2008. 18(12): p. 1832-1839. 46.Hirschmann, J., H. Faber, and M. Halik, Concept of a thin film memory transistor based on ZnO nanoparticles insulated by a ligand shell. Nanoscale, 2012. 4(2): p. 444-447. 47.Kim, B.J., et al., Organic field‐effect transistor memory devices using discrete ferritin nanoparticle‐based gate dielectrics. Small, 2013. 9(22): p. 3784-3791. 48.Jung, J.H., et al., High‐performance flexible organic nano‐floating gate memory devices functionalized with cobalt ferrite nanoparticles. Small, 2015. 11(37): p. 4976-4984. 49.Park, W.I., et al., Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano, 2013. 7(3): p. 2651-2658. 50.Chen, C.-M., et al., A nanostructured micellar diblock copolymer layer affects the memory characteristics and packing of pentacene molecules in non-volatile organic field-effect transistor memory devices. J. Mater. Chem. C, 2013. 1(12): p. 2328-2337. 51.Leong, W.L., et al., Non‐volatile organic memory applications enabled by in situ synthesis of gold nanoparticles in a self‐assembled block copolymer. Adv. Mater., 2008. 20(12): p. 2325-2331. 52.Wei, Q., et al., Additive-driven assembly of block copolymer–nanoparticle hybrid materials for solution processable floating gate memory. ACS Nano, 2012. 6(2): p. 1188-1194. 53.Chiu, Y.C., et al., High‐Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar‐based Block Copolymers and Their Supramolecules. Adv. Funct. Mater., 2014. 24(27): p. 4240-4249. 54.Lo, C.T., et al., Donor–Acceptor Core–Shell Nanoparticles and Their Application in Non‐Volatile Transistor Memory Devices. Macromol. Rapid Commun., 2019. 40(12): p. 1900115. 55.Chou, Y.-H., et al., Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem., 2015. 6(3): p. 341-352. 56.Sadoon, T., Classification of medical images based on deep learning network (CNN) for both brain tumors and covid-19. Diss. Ministry of Higher Education, 2021. 57.Yang, L., et al., Transparent and flexible inorganic perovskite photonic artificial synapses with dual‐mode operation. Adv. Funct. Mater., 2021. 31(6): p. 2008259. 58.李文亞, 仿神經型態電子元件: 軟性人工突觸電晶體. 化工, 2021. 68(1): p. 82-93. 59.Feng, L., et al., All-solution-processed low-voltage organic thin-film transistor inverter on plastic substrate. IEEE Trans. Electron Devices, 2014. 61(4): p. 1175-1180. 60.Kim, D.H. and J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater., 2008. 20(24): p. 4887-4892. 61.Lee, S., et al., Development of high-performance organic thin-film transistors for large-area displays. MRS Bull., 2006. 31(6): p. 455-459. 62.Someya, T., et al., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proceedings of the National Academy of Sciences, 2005. 102(35): p. 12321-12325. 63.Rogers, J.A., et al., like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences, 2001. 98(9): p. 4835-4840. 64.Chortos, A., J. Liu, and Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater., 2016. 15(9): p. 937-950. 65.Lacour, S.P., et al., Stretchable interconnects for elastic electronic surfaces. Proc. IEEE, 2005. 93(8): p. 1459-1467. 66.Hsu, P., et al., Spherical deformation of compliant substrates with semiconductor device islands. J. Appl. Phys., 2004. 95(2): p. 705-712. 67.Spaepen, F., Interfaces and stresses in thin films. Acta Mater., 2000. 48(1): p. 31-42. 68.Pashley, D.W., A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1960. 255(1281): p. 218-231. 69.Sun, Y. and J.A. Rogers, Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics. J. Mater. Chem., 2007. 17(9): p. 832-840. 70.Kaltenbrunner, M., et al., An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013. 499(7459): p. 458-463. 71.Hecht, D.S., L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater., 2011. 23(13): p. 1482-1513. 72.Lee, P., et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater., 2012. 24(25): p. 3326-3332. 73.Dang, C., et al., Achieving large uniform tensile elasticity in microfabricated diamond. Science, 2021. 371(6524): p. 76-78. 74.Yang, D., et al., A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder. J. Appl. Phys., 2013. 114(15). 75.Wang, S., et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018. 555(7694): p. 83-88. 76.White, S.R., et al., Autonomic healing of polymer composites. Nature, 2001. 409(6822): p. 794-797. 77.Toohey, K.S., et al., Self-healing materials with microvascular networks. Nat. Mater., 2007. 6(8): p. 581-585. 78.Oh, J.Y., et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016. 539(7629): p. 411-415. 79.Chen, X., et al., A thermally re-mendable cross-linked polymeric material. Science, 2002. 295(5560): p. 1698-1702. 80.Claus, T.K., et al., Light-driven reversible surface functionalization with anthracenes: visible light writing and mild UV erasing. Chem. Commun., 2017. 53(10): p. 1599-1602. 81.Yan, Q.-Y., et al., Shear-Enhanced Stretchable Polymer Semiconducting Blends for Polymer-based Field-Effect Transistors. Macromol. Res., 2020. 28(7): p. 660-669. 82.Yu, T.-F., et al., Solution-processable anion-doped conjugated polymer for nonvolatile organic transistor memory with synaptic behaviors. ACS Appl. Mater. Interfaces, 2020. 12(30): p. 33968-33978. 83.Jiang, J., et al., 2D MoS2 neuromorphic devices for brain‐like computational systems. Small, 2017. 13(29): p. 1700933.
|