跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周庭宇
研究生(外文):CHOU, TING-YU
論文名稱:基於馬米雪夫振盪器之高功率摻銩鎖模光纖雷射
論文名稱(外文):High-power Thulium-doped mode-locked fiber laser based on Mamyshev oscillator
指導教授:李穎玟
指導教授(外文):LEE, YIN-WEN
口試委員:黃升龍董容辰李穎玟
口試委員(外文):HUANG, SHENG-LUNGTUNG, JUNG-CHENLEE, YIN-WEN
口試日期:2024-06-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:78
中文關鍵詞:鎖模光纖雷射馬米雪夫振盪器高功率雷射雷射輔助穿孔
外文關鍵詞:Mode-locked fiber laserMamyshev oscillatorHigh power laserLaser assisted photoporation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究旨在開發基於馬米雪夫振盪器(Mamyshev oscillator, MO)的高功率摻銩鎖模光纖雷射,並探討其在雷射輔助穿孔技術中的應用。2微米波段的摻銩雷射因其在醫療、環境監測和材料加工領域的應用潛力而受到廣泛關注,特別是由於水在此波段具有高吸收特性。首先,我們使用現有鎖模雷射對黃皮洋蔥(Allium cepa L.)鱗葉表皮細胞膜進行雷射穿孔實驗,但結果顯示脈衝能量不足,無法達到預期效果。為了解決這一問題,我們引入了一種新型的光纖雷射系統,即馬米雪夫振盪器(MO),其能夠產生高峰值功率的脈衝。我們首先重複了文獻中的設計理念,並進行了校準以擬合出文獻的結果。接著,我們利用數值模擬軟體 Fiberdesk 對系統進行優化,模擬結果顯示,在特定條件下,可以得到最高9.6 nJ的輸出脈衝能量,145mW的輸出功率以及1.4 kW的峰值功率。此模擬結果不僅優於參考文獻的實驗結果,更顯示出此系統在雷射應用於光穿孔的潛在價值。儘管尚未實驗證實,但數值模擬顯示了此系統的潛在應用價值。未來,我們計劃在實驗端建立此雷射系統,並進行實驗以驗證其在實際應用中的可行性。
The research aims to develop a high-power thulium-doped mode-locked fiber laser based on the Mamyshev oscillator (MO) and explore its application in laser-assisted perforation technology. Thulium-doped lasers in the 2-micron band have garnered widespread attention for their potential applications in medical, environmental monitoring, and materials processing, especially due to water's high absorption characteristics in this wavelength band. Initially, we use an existing mode-locked laser to conduct laser perforation experiments on the epidermal cell membranes of yellow onions (Allium cepa L.), but the results show insufficient pulse energy to achieve the desired effect. To address this issue, we introduce a novel mode-locked fiber laser system, the Mamyshev oscillator (MO), capable of generating high peak power pulses. We first replicate the design concepts from the literatures and calibrate them to fit the literature's results. Next, we utilize numerical simulation software, Fiberdesk, to optimize the system. Simulation results show that under the best conditions, the system could achieve a maximum output pulse energy of 9.6 nJ, an average power of 145mW, and a peak power of 1.4 kW. These simulation results not only surpass the published experimental results but also demonstrate the potential value of this system for laser-assisted perforation applications. Although experimental validation is still pending, the numerical simulation results verify the potential application value of this system. In the future, we plan to establish this laser system experimentally and conduct experiments to verify its feasibility in practical applications. 
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 論文內容與章節概要 2
第二章 光纖雷射之導論 3
2.1 雷射簡介 3
2.2 光纖雷射架構 4
2.2.1 幫浦光源 (Pumping source) 4
2.2.2 增益介質 (Gain medium) 6
2.2.3 共振腔 (Cavity) 7
第三章 鎖模雷射之廣論 9
3.1 鎖模雷射基本原理 9
3.2 不同種類的脈衝演化 12
3.2.1 光孤子 (Soliton) 12
3.2.2 展波光孤子 (Stretched pulse soliton) 13
3.2.3 耗散光孤子 (Dissipative soliton) 14
3.2.4 自相似 (Self-similar) 15
3.2.5 馬米雪夫振盪器 (Mamyshev oscillator) 16
3.3 超短脈衝量測技術 18
第四章 光纖雷射應用實驗 21
4.1 商用鎖模光纖雷射 23
4.2 雷射實驗結果與分析 24
4.2.1 樣品準備 24
4.2.2 雷射實驗架構 24
4.2.3 雷射實驗結果 25
第五章 光纖鎖模雷射之數值模擬 28
5.1 文獻回顧 28
5.2 基於馬米雪夫之摻銩鎖模光纖雷射數值模擬結果 31
5.2.1 馬米雪夫振盪器之工作原理 32
5.2.2 數值模擬 架構建立 34
5.2.3 重複參考文獻數值模擬與之擬合比較結果 37
5.3 模擬參數調整之結果與分析 41
5.3.1 光纖非線性折射率係數之影響分析 41
5.3.2 腔體輸出穿透率之影響分析 46
5.3.3 光纖增益飽和能量之影響分析 49
5.3.4 光纖總增益之影響分析 52
5.3.5 光譜濾波器中心波長之影響分析 55
5.3.6 種子脈衝寬度之影響分析 59
5.3.7 種子脈衝 能量之影響分析 62
5.4 種子光源的選擇與模擬分析 64
第六章 結論與未來展望 67
6.1 研究結果統整 67
6.2 未來展望 68
參考文獻 69
附錄A 74
[1] Hanna, D.C., et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser. Electronics Letters, 1988. 24, 1222-1223.
[2] Hanna, D.C., et al., Efficient and tunable operation of a Tm-doped fibre laser. Optics Communications, 1990. 75(3): p. 283-286.
[3] Jackson, S.D. and T.A. King, Theoretical modeling of Tm-doped silica fiber lasers. Journal of Lightwave Technology, 1999. 17(5): p. 948-956.
[4] Fu, W., et al., Several new directions for ultrafast fiber lasers [Invited]. Opt Express, 2018. 26(8): p. 9432-9463.
[5] Zhou, J. and J.V. Jokerst, Photoacoustic imaging with fiber optic technology: A review. Photoacoustics, 2020. 20: p. 100211.
[6] Chen, S.-L., L.J. Guo, and X. Wang, All-optical photoacoustic microscopy. Photoacoustics, 2015. 3(4): p. 143-150.
[7] Ma, W., et al., High-sensitivity few-mode heterodyne receiver with a few-mode optical fiber amplifier for turbulence resistance in free space optical communication. Optics Communications, 2024. 554: p. 130126.
[8] Biswas, S., et al., Study on kerf width deviation of microchannel with various medium in laser transmission cutting by diode pump fiber laser. Materials Today: Proceedings, 2020. 26: p. 804-807.
[9] Digonnet, M.J.F., Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. 2001.
[10] Breck Hitz, J.J.E., Jeff Hecht, Laser Resonators, in Introduction to Laser Technology. 2001. p. 89-100.
[11] Hasegawa, A. and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 2003. 23(3):p. 142-144.
[12] Wang, Y., et al., Generation of stretched pulses and dissipative solitons at 2μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers. Optics Letters, 2016. 41(16): p. 3864-3867.
[13] Li, H., et al., Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers. Optics Express, 2015. 23(5): p. 6292-6303.
[14] Yang, N., et al., 12 nJ 2 μm dissipative soliton fiber laser. Laser Physics Letters, 2015. 12(5): p. 055101.
[15] Kieu, K., et al., Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Optics Letters, 2009. 34(5): p. 593-595.
[16] Fermann, M.E., et al., Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Physical Review Letters, 2000. 84(26): p. 6010-6013.
[17] Nie, B., et al., Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Optics Express, 2011. 19(13): p. 12074-12080.
[18] Dudley, J.M., et al., Self-similarity in ultrafast nonlinear optics. Nature Physics, 2007. 3(9): p. 597-603.
[19] Mamyshev, P.V. All-optical data regeneration based on self-phase modulation effect. in 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398). 1998.
[20] Liu, Z., et al., Megawatt peak power from a Mamyshev oscillator. Optica, 2017. 4(6): p. 649-654.
[21] Pitois, S., et al., Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. Journal of the Optical Society of America B, 2008. 25(9): p. 1537-1547.
[22] Femtochrome Research, I.; Available from: https://www.femtochrome.com/pdf/FR-103HP.pdf.
[23] Pastinen, T. and T.J. Hudson, Cis-Acting Regulatory Variation in the Human Genome. Science, 2004. 306(5696): p. 647-650.
[24] Xiong, R., et al., Laser-assisted photoporation: fundamentals, technological advances and applications. Advances in Physics: X, 2016. 1(4): p. 596-620.
[25] Heinemann, D., et al., Laser-based molecular delivery and its applications in plant science. Plant Methods, 2022. 18(1): p. 82.
[26] Karsten Scholle, S.L., Philipp Koopmann and Peter Fuhrberg, 2 μm Laser Sources and Their Possible Applications, in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, Editor. 2010.
[27] Tsen, S.-W.D., et al., Femtosecond laser treatment enhances DNA transfection efficiency in vivo. Journal of Biomedical Science, 2009. 16(1): p. 36.
[28] LeBlanc, M.L., et al., Optoperforation of single, intact Arabidopsis cells for uptake of extracellular dye-conjugated dextran. Optics Express, 2013. 21(12): p. 14662-14673.
[29] Repgen, P., et al., Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator. Optics Express, 2020. 28(9): p. 13837-13844.
[30] Repgen, P., Generation of high-energy pulses by managing the kerr-nonlinearity in fiber-based laser amplifiers. 2021, Gottfried Wilhelm Leibniz Universität: Hannover.
[31] Ciąćka, P., et al., Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. Journal of the Optical Society of America B, 2018. 35(6): p. 1301-1307.
[32] Zhang, W., et al., The Adoption of Chalcogenide Glass Fiber as Pulse Stretcher in an All-Fiber Structured 2 μm Chirped Pulse Amplification System. IEEE Photonics Journal, 2021. 13(2): p. 1-10.
[33] Ahmad, H., et al., Boron carbon oxynitride coated arc-shaped fiber as an optical modulator for passively mode-locked fiber lasers at 1.5 and 2 μm wavelength. Physica Scripta, 2023. 98(2): p. 025502.
[34] Stolen, R.H. and C. Lin, Self-phase-modulation in silica optical fibers. Physical Review A, 1978. 17(4): p. 1448-1453.
[35] Li, Y.-Y., et al., Generation of High-Peak-Power Femtosecond Pulses in Mamyshev Oscillators: Recent Advances and Future Challenges. Laser & Photonics Reviews, 2023. 17(4): p. 2200596.
[36] Agrawal, G.P., Chapter 11 - Highly nonlinear fibers, in Nonlinear Fiber Optics (Sixth Edition), G.P. Agrawal, Editor. 2019, Academic Press. p. 463-502.
[37] Boskovic, A., et al., Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm. Optics Letters, 1996. 21(24): p. 1966-1968.
[38] Prigent, L. and J.P. Hamaide, Measurement of fiber nonlinear Kerr coefficient by four-wave mixing. IEEE Photonics Technology Letters, 1993. 5(9): p. 1092-1095.
[39] Namihira, Y., A. Miyata, and N. Tanahashi, Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 μm. Electronics Letters, 1994. 30(14): p. 1171-1172.
[40] Artiglia, M., E. Ciaramella, and B. Sordo, Using modulation instability to determine Kerr coefficient in optical fibres. Electronics Letters, 1995. 31(12): p. 1012-1013.
[41] Kato, T., Y. Suetsugu, and M. Nishimura, Estimation of nonlinear refractive index in various silica-based glasses for optical fibers. Optics Letters, 1995. 20(22): p. 2279-2281.
[42] Han, H., et al. Output Pulse Characteristics of a Mamyshev Fiber Oscillator. Photonics, 2021. 8, DOI: 10.3390/photonics8120590.
[43] Yan, D., et al., Pulse dynamic patterns in a self-starting Mamyshev oscillator. Optics Express, 2021. 29(7): p. 9805-9815.
[44] Nie, M., J. Wang, and S.-W. Huang, Solid-state Mamyshev oscillator. Photonics Research,2019. 7(10): p. 1175-1181.
[45] Wang, T., et al., Over 80 nJ Sub-100 fs All-Fiber Mamyshev Oscillator. IEEE Journal of Selected Topics in Quantum Electronics, 2021. 27(6): p. 1-5.
[46] Repgen, P., et al., Sub-50 fs, μJ-level pulses from a Mamyshev oscillator–amplifier system. Optics Letters, 2019. 44(24): p. 5973-5976.
[47] Poeydebat, E., et al., All-fiber Mamyshev oscillator with high average power and harmonic mode-locking. Optics Letters, 2020. 45(6): p. 1395-1398.
[48] Haig, H., et al., Multimode Mamyshev oscillator. Optics Letters, 2022. 47(1): p. 46-49.
[49] Xu, S.-S., et al., Multipulse dynamics in a Mamyshev oscillator. Optics Letters, 2020. 45(9): p. 2620-2623.
[50] Chen, Y.-H., et al., Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator. Journal of the Optical Society of America B, 2021. 38(3): p. 743-748.
[51] Luo, X., et al., All-Fiber Mode-Locked Laser Based on Mamyshev Mechanism With High-Energy Pulse Generation at 1550 nm. Journal of Lightwave Technology, 2020. 38(6): p. 1468-1473.
電子全文 電子全文(網際網路公開日期:20290726)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top