|
[1] Hanna, D.C., et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser. Electronics Letters, 1988. 24, 1222-1223. [2] Hanna, D.C., et al., Efficient and tunable operation of a Tm-doped fibre laser. Optics Communications, 1990. 75(3): p. 283-286. [3] Jackson, S.D. and T.A. King, Theoretical modeling of Tm-doped silica fiber lasers. Journal of Lightwave Technology, 1999. 17(5): p. 948-956. [4] Fu, W., et al., Several new directions for ultrafast fiber lasers [Invited]. Opt Express, 2018. 26(8): p. 9432-9463. [5] Zhou, J. and J.V. Jokerst, Photoacoustic imaging with fiber optic technology: A review. Photoacoustics, 2020. 20: p. 100211. [6] Chen, S.-L., L.J. Guo, and X. Wang, All-optical photoacoustic microscopy. Photoacoustics, 2015. 3(4): p. 143-150. [7] Ma, W., et al., High-sensitivity few-mode heterodyne receiver with a few-mode optical fiber amplifier for turbulence resistance in free space optical communication. Optics Communications, 2024. 554: p. 130126. [8] Biswas, S., et al., Study on kerf width deviation of microchannel with various medium in laser transmission cutting by diode pump fiber laser. Materials Today: Proceedings, 2020. 26: p. 804-807. [9] Digonnet, M.J.F., Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. 2001. [10] Breck Hitz, J.J.E., Jeff Hecht, Laser Resonators, in Introduction to Laser Technology. 2001. p. 89-100. [11] Hasegawa, A. and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 2003. 23(3):p. 142-144. [12] Wang, Y., et al., Generation of stretched pulses and dissipative solitons at 2μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers. Optics Letters, 2016. 41(16): p. 3864-3867. [13] Li, H., et al., Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers. Optics Express, 2015. 23(5): p. 6292-6303. [14] Yang, N., et al., 12 nJ 2 μm dissipative soliton fiber laser. Laser Physics Letters, 2015. 12(5): p. 055101. [15] Kieu, K., et al., Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Optics Letters, 2009. 34(5): p. 593-595. [16] Fermann, M.E., et al., Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Physical Review Letters, 2000. 84(26): p. 6010-6013. [17] Nie, B., et al., Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Optics Express, 2011. 19(13): p. 12074-12080. [18] Dudley, J.M., et al., Self-similarity in ultrafast nonlinear optics. Nature Physics, 2007. 3(9): p. 597-603. [19] Mamyshev, P.V. All-optical data regeneration based on self-phase modulation effect. in 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398). 1998. [20] Liu, Z., et al., Megawatt peak power from a Mamyshev oscillator. Optica, 2017. 4(6): p. 649-654. [21] Pitois, S., et al., Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. Journal of the Optical Society of America B, 2008. 25(9): p. 1537-1547. [22] Femtochrome Research, I.; Available from: https://www.femtochrome.com/pdf/FR-103HP.pdf. [23] Pastinen, T. and T.J. Hudson, Cis-Acting Regulatory Variation in the Human Genome. Science, 2004. 306(5696): p. 647-650. [24] Xiong, R., et al., Laser-assisted photoporation: fundamentals, technological advances and applications. Advances in Physics: X, 2016. 1(4): p. 596-620. [25] Heinemann, D., et al., Laser-based molecular delivery and its applications in plant science. Plant Methods, 2022. 18(1): p. 82. [26] Karsten Scholle, S.L., Philipp Koopmann and Peter Fuhrberg, 2 μm Laser Sources and Their Possible Applications, in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, Editor. 2010. [27] Tsen, S.-W.D., et al., Femtosecond laser treatment enhances DNA transfection efficiency in vivo. Journal of Biomedical Science, 2009. 16(1): p. 36. [28] LeBlanc, M.L., et al., Optoperforation of single, intact Arabidopsis cells for uptake of extracellular dye-conjugated dextran. Optics Express, 2013. 21(12): p. 14662-14673. [29] Repgen, P., et al., Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator. Optics Express, 2020. 28(9): p. 13837-13844. [30] Repgen, P., Generation of high-energy pulses by managing the kerr-nonlinearity in fiber-based laser amplifiers. 2021, Gottfried Wilhelm Leibniz Universität: Hannover. [31] Ciąćka, P., et al., Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. Journal of the Optical Society of America B, 2018. 35(6): p. 1301-1307. [32] Zhang, W., et al., The Adoption of Chalcogenide Glass Fiber as Pulse Stretcher in an All-Fiber Structured 2 μm Chirped Pulse Amplification System. IEEE Photonics Journal, 2021. 13(2): p. 1-10. [33] Ahmad, H., et al., Boron carbon oxynitride coated arc-shaped fiber as an optical modulator for passively mode-locked fiber lasers at 1.5 and 2 μm wavelength. Physica Scripta, 2023. 98(2): p. 025502. [34] Stolen, R.H. and C. Lin, Self-phase-modulation in silica optical fibers. Physical Review A, 1978. 17(4): p. 1448-1453. [35] Li, Y.-Y., et al., Generation of High-Peak-Power Femtosecond Pulses in Mamyshev Oscillators: Recent Advances and Future Challenges. Laser & Photonics Reviews, 2023. 17(4): p. 2200596. [36] Agrawal, G.P., Chapter 11 - Highly nonlinear fibers, in Nonlinear Fiber Optics (Sixth Edition), G.P. Agrawal, Editor. 2019, Academic Press. p. 463-502. [37] Boskovic, A., et al., Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm. Optics Letters, 1996. 21(24): p. 1966-1968. [38] Prigent, L. and J.P. Hamaide, Measurement of fiber nonlinear Kerr coefficient by four-wave mixing. IEEE Photonics Technology Letters, 1993. 5(9): p. 1092-1095. [39] Namihira, Y., A. Miyata, and N. Tanahashi, Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 μm. Electronics Letters, 1994. 30(14): p. 1171-1172. [40] Artiglia, M., E. Ciaramella, and B. Sordo, Using modulation instability to determine Kerr coefficient in optical fibres. Electronics Letters, 1995. 31(12): p. 1012-1013. [41] Kato, T., Y. Suetsugu, and M. Nishimura, Estimation of nonlinear refractive index in various silica-based glasses for optical fibers. Optics Letters, 1995. 20(22): p. 2279-2281. [42] Han, H., et al. Output Pulse Characteristics of a Mamyshev Fiber Oscillator. Photonics, 2021. 8, DOI: 10.3390/photonics8120590. [43] Yan, D., et al., Pulse dynamic patterns in a self-starting Mamyshev oscillator. Optics Express, 2021. 29(7): p. 9805-9815. [44] Nie, M., J. Wang, and S.-W. Huang, Solid-state Mamyshev oscillator. Photonics Research,2019. 7(10): p. 1175-1181. [45] Wang, T., et al., Over 80 nJ Sub-100 fs All-Fiber Mamyshev Oscillator. IEEE Journal of Selected Topics in Quantum Electronics, 2021. 27(6): p. 1-5. [46] Repgen, P., et al., Sub-50 fs, μJ-level pulses from a Mamyshev oscillator–amplifier system. Optics Letters, 2019. 44(24): p. 5973-5976. [47] Poeydebat, E., et al., All-fiber Mamyshev oscillator with high average power and harmonic mode-locking. Optics Letters, 2020. 45(6): p. 1395-1398. [48] Haig, H., et al., Multimode Mamyshev oscillator. Optics Letters, 2022. 47(1): p. 46-49. [49] Xu, S.-S., et al., Multipulse dynamics in a Mamyshev oscillator. Optics Letters, 2020. 45(9): p. 2620-2623. [50] Chen, Y.-H., et al., Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator. Journal of the Optical Society of America B, 2021. 38(3): p. 743-748. [51] Luo, X., et al., All-Fiber Mode-Locked Laser Based on Mamyshev Mechanism With High-Energy Pulse Generation at 1550 nm. Journal of Lightwave Technology, 2020. 38(6): p. 1468-1473.
|