|
References [1]F. A. J. L. James, “Erasmus Bartholin, Experiments on Birefringent Icelandic Crystal, translated by Thomas Archibald. Introduction by Jed Z. Buchwald and Kurt Moller Pedersen, with a facsimile of the original publication. Copenhagen: Danish National Library of Science and Medicine, 1991. Pp. 63 + 64. ISBN 87-7709-010-1. 160 DKK.,” The British Journal for the History of Science, vol. 27, no. 3, pp. 366–367, Sep. 1994, doi: 10.1017/S000708740003226X. [2]J. Z. Buchwald, “Huygens’ Methods for Determining Optical Parameters in Birefringence,” Arch Hist Exact Sci, vol. 61, no. 1, pp. 67–81, Jan. 2007, doi: 10.1007/s00407-006-0115-7. [3]“THE OPTICAL PAPERS OF ISAAC NEWTON,” 2021, doi: 10.1017/9781139043526. [4]G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt Commun, vol. 163, no. 1–3, pp. 95–102, May 1999, doi: 10.1016/S0030-4018(99)00091-7. [5]P. T. B. Shaffer, “Refractive Index, Dispersion, and Birefringence of Silicon Carbide Polytypes,” Appl Opt, vol. 10, no. 5, p. 1034, May 1971, doi: 10.1364/AO.10.001034. [6]Y. Rah, Y. Jin, S. Kim, and K. Yu, “Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared,” Opt Lett, vol. 44, no. 15, p. 3797, Aug. 2019, doi: 10.1364/OL.44.003797. [7]J. Ritter, N. Ma, W. Osten, M. Takeda, and W. Wang, “Depolarizing surface scattering by a birefringent material with rough surface,” Opt Commun, vol. 430, pp. 456–460, Jan. 2019, doi: 10.1016/j.optcom.2018.08.048. [8]S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J Biomed Opt, vol. 14, no. 4, p. 044032, 2009, doi: 10.1117/1.3207142. [9]V. Ganapati et al., “Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon,” J Appl Phys, vol. 108, no. 6, Sep. 2010, doi: 10.1063/1.3468404. [10]Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center‐gated disk. Part I: Basic modeling and results for injection molding,” Polym Eng Sci, vol. 42, no. 11, pp. 2246–2272, Nov. 2002, doi: 10.1002/pen.11114. [11]A. I. Isayev, G. D. Shyu, and C. T. Li, “Residual stresses and birefringence in injection molding of amorphous polymers: Simulation and comparison with experiment,” J Polym Sci B Polym Phys, vol. 44, no. 3, pp. 622–639, Feb. 2006, doi: 10.1002/polb.20724. [12]M. Chen, D. Yao, and B. Kim, “ELIMINATING FLOW INDUCED BIREFRINGENCE AND MINIMIZING THERMALLY INDUCED RESIDUAL STRESSES IN INJECTION MOLDED PARTS *,” Polym Plast Technol Eng, vol. 40, no. 4, pp. 491–503, Aug. 2001, doi: 10.1081/PPT-100002072. [13]J. Greener and G. H. Pearson, “Orientation Residual Stresses and Birefringence in Injection Molding,” J Rheol (N Y N Y), vol. 27, no. 2, pp. 115–134, Apr. 1983, doi: 10.1122/1.549701. [14]A.-H. Liu, P. C. Wayner, and J. L. Plawsky, “Image scanning ellipsometry for measuring nonuniform film thickness profiles,” Appl Opt, vol. 33, no. 7, p. 1223, Mar. 1994, doi: 10.1364/AO.33.001223. [15]G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films, vol. 290–291, pp. 40–45, Dec. 1996, doi: 10.1016/S0040-6090(96)09009-8. [16]D. Pristinski, V. Kozlovskaya, and S. A. Sukhishvili, “Determination of film thickness and refractive index in one measurement of phase-modulated ellipsometry,” Journal of the Optical Society of America A, vol. 23, no. 10, p. 2639, Oct. 2006, doi: 10.1364/JOSAA.23.002639. [17]S. A. Henck, “In situ real-time ellipsometry for film thickness measurement and control,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 10, no. 4, pp. 934–938, Jul. 1992, doi: 10.1116/1.577881. [18]D. C. Adams et al., “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci Transl Med, vol. 8, no. 359, Oct. 2016, doi: 10.1126/scitranslmed.aag1424. [19]A. Keller, “The spherulitic structure of crystalline polymers. Part I. Investigations with the polarizing microscope,” Journal of Polymer Science, vol. 17, no. 84, pp. 291–308, Jun. 1955, doi: 10.1002/pol.1955.120178414. [20]Y. Wang et al., “Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope,” Micron, vol. 79, pp. 8–15, Dec. 2015, doi: 10.1016/j.micron.2015.07.014. [21]I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl Phys Lett, vol. 86, no. 2, Jan. 2005, doi: 10.1063/1.1849839. [22]K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl Opt, vol. 47, no. 34, p. 6428, Dec. 2008, doi: 10.1364/AO.47.006428. [23]L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt Express, vol. 20, no. 22, p. 24103, Oct. 2012, doi: 10.1364/OE.20.024103. [24]Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated polarisation beam splitter using waveguide birefringence dependence on waveguide core width,” Electron Lett, vol. 37, no. 25, p. 1517, 2001, doi: 10.1049/el:20011012. [25]D.-X. Xu et al., “Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress,” Opt Lett, vol. 29, no. 20, p. 2384, Oct. 2004, doi: 10.1364/OL.29.002384. [26]H. L. Ong, “Improvement of LCD Viewing Angles by Negative Birefringence Compensation Films,” Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, vol. 320, no. 1, pp. 59–67, Oct. 1998, doi: 10.1080/10587259808024383. [27]H. Mori, Y. Itoh, Y. Nishiura, T. Nakamura, and Y. S. Yukio Shinagawa, “Performance of a Novel Optical Compensation Film Based on Negative Birefringence of Discotic Compound for Wide-Viewing-Angle Twisted-Nematic Liquid-Crystal Displays,” Jpn J Appl Phys, vol. 36, no. 1R, p. 143, Jan. 1997, doi: 10.1143/JJAP.36.143. [28]David Brewster, “Experiments on the depolarisation of light as exhibited by various mineral, animal, and vegetable bodies, with a reference of the phenomena to the general principles of polarisation. By David Brewster, LL. D. F. R. S. Edin and F. S. A. Edin. In a letter addressed to the Right Hon. Sir Joseph Banks, Bart. K. B. P. R. S,” Philos Trans R Soc Lond, vol. 105, pp. 29–53, Dec. 1815, doi: 10.1098/rstl.1815.0004. [29]David Brewster, “On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation. By David Brewster, LL. D. F. R. S. Lond. and Edin. In a letter addressed to the Right Hon. Sir Joseph Banks, Bart. G. C. B. P. R. S,” Philos Trans R Soc Lond, vol. 106, pp. 156–178, Dec. 1816, doi: 10.1098/rstl.1816.0011. [30]A. Fresnel and G. R. Putland, “Note on the double refraction of compressed glass,” 1822. [31]K. Ramesh and S. K. Mangal, “Data acquisition techniques in digital photoelasticity: a review,” Opt Lasers Eng, vol. 30, no. 1, pp. 53–75, Jul. 1998, doi: 10.1016/S0143-8166(97)00105-X. [32]A. Ajovalasit, S. Barone, and G. Petrucci, “A review of automated methods for the collection and analysis of photoelastic data,” J Strain Anal Eng Des, vol. 33, no. 2, pp. 75–91, Feb. 1998, doi: 10.1243/0309324981512832. [33]E. A. Patterson, “Digital Photoelasticity: Principles, Practice and Potential,” Strain, vol. 38, no. 1, pp. 27–39, Feb. 2002, doi: 10.1046/j.0039-2103.2002.00004.x. [34]K. Ramesh, Developments in Photoelasticity. IOP Publishing, 2021. doi: 10.1088/978-0-7503-2472-4. [35]K. Ramesh, Ed., Digital Photoelasticity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. doi: 10.1007/978-3-642-59723-7. [36]K. G. Raptis and A. A. Savaidis, “Experimental investigation of spur gear strength using photoelasticity,” Procedia Structural Integrity, vol. 10, pp. 33–40, 2018, doi: 10.1016/j.prostr.2018.09.006. [37]M. Franulovic, K. Markovic, Z. Vrcan, and M. Soban, “Experimental and analytical investigation of the influence of pitch deviations on the loading capacity of HCR spur gears,” Mech Mach Theory, vol. 117, pp. 96–113, Nov. 2017, doi: 10.1016/j.mechmachtheory.2017.07.006. [38]P. Forte, A. Paoli, and A. V. Razionale, “A CAE approach for the stress analysis of gear models by 3D digital photoelasticity,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 9, no. 1, pp. 31–43, Feb. 2015, doi: 10.1007/s12008-013-0201-4. [39]N. K. Raghuwanshi and A. Parey, “Mesh stiffness measurement of cracked spur gear by photoelasticity technique,” Measurement, vol. 73, pp. 439–452, Sep. 2015, doi: 10.1016/j.measurement.2015.05.035. [40]J.-H. Nam, J.-S. Hawong, K.-H. Kim, Liu-Yi, O.-S. Kwon, and S.-H. Park, “A study on the development of a loading device using a photoelastic stress freezing method for the analysis of o-ring stress,” Journal of Mechanical Science and Technology, vol. 24, no. 3, pp. 693–701, Mar. 2010, doi: 10.1007/s12206-010-0201-2. [41]B. R. Mose, D. K. Shin, and J. H. Nam, “Development of an Experimental System to Measure Stresses in a Bearing Using Photo-elasticity,” Exp Mech, vol. 58, no. 3, pp. 437–447, Mar. 2018, doi: 10.1007/s11340-017-0361-4. [42]B. E. Foust, J. R. Lesniak, and R. E. Rowlands, “Stress analysis of a pinned wood joint by grey-field photoelasticity,” Compos B Eng, vol. 61, pp. 291–299, May 2014, doi: 10.1016/j.compositesb.2014.01.041. [43]B. R. Mose, J.-S. Hawong, D.-K. Shin, H.-S. Lim, and D.-C. Shin, “Stress and fracture analysis of D-ring by photoelastic experimental hybrid method,” Journal of Mechanical Science and Technology, vol. 31, no. 8, pp. 3657–3660, Aug. 2017, doi: 10.1007/s12206-017-0704-1. [44]A. O. Bernard, J.-S. Hawong, D.-C. Shin, and B. Dong, “Contact behavior analysis of elastomeric x-ring under uniform squeeze rate and internal pressure before and after forcing-out using the photoelastic experimental hybrid method,” Journal of Mechanical Science and Technology, vol. 29, no. 5, pp. 2157–2168, May 2015, doi: 10.1007/s12206-015-0436-z. [45]B. R. Mose, D. K. Shin, and J. H. Nam, “Experimental Stress Analysis of Spherical Roller Bearing for High-Speed Trains Using Photoelasticity,” Exp Tech, vol. 47, no. 3, pp. 669–678, Jun. 2023, doi: 10.1007/s40799-022-00576-3. [46]L. Frishter, “Geometrically Non-Linear Plane Elasticity Problem in the Area of an Angular Boundary Cut-Out,” Axioms, vol. 12, no. 11, p. 1030, Nov. 2023, doi: 10.3390/axioms12111030. [47]C. Vargas-Isaza, J. Posada-Correa, and J. Briñez-de León, “Analysis of the Stress Field in Photoelasticity Used to Evaluate the Residual Stresses of a Plastic Injection-Molded Part,” Polymers (Basel), vol. 15, no. 16, p. 3377, Aug. 2023, doi: 10.3390/polym15163377. [48]M. Stoehr, G. Gerlach, T. Härtling, and S. Schoenfelder, “Analysis of photoelastic properties of monocrystalline silicon,” Journal of Sensors and Sensor Systems, vol. 9, no. 2, pp. 209–217, Jul. 2020, doi: 10.5194/jsss-9-209-2020. [49]F. Jagailloux, V. Valle, J. ‐C. Dupré, J. ‐D. Penot, and A. Chabli, “Applied Photoelasticity for Residual Stress Measurement inside Crystal Silicon Wafers for Solar Applications,” Strain, vol. 52, no. 4, pp. 355–368, Aug. 2016, doi: 10.1111/str.12185. [50]F. Jagailloux and V. Valle, “Analysis and comparison of different methods used to extract isoclinic and isochromatic parameters. Application to the determination of the residual stresses inside crystal silicon wafers,” Strain, vol. 54, no. 4, Aug. 2018, doi: 10.1111/str.12275. [51]P. Maló, B. Rangert, and M. Nobre, “‘All‐on‐Four’ Immediate‐Function Concept with Brånemark System® Implants for Completely Edentulous Mandibles: A Retrospective Clinical Study,” Clin Implant Dent Relat Res, vol. 5, no. s1, pp. 2–9, Mar. 2003, doi: 10.1111/j.1708-8208.2003.tb00010.x. [52]P. H. de Moraes, S. Olate, M. de Arruda Nóbilo, L. Asprino, M. de Moraes, and J. de Albergaría Barbosa, “Maxillary ‘All-On-Four’ treatment using zygomatic implants. A mechanical analysis,” Rev Stomatol Chir Maxillofac Chir Orale, vol. 117, no. 2, pp. 67–71, Apr. 2016, doi: 10.1016/j.revsto.2015.11.009. [53]M. C. Goiato, H. R. Matheus, R. A. de Medeiros, D. M. dos Santos, S. B. Bitencourt, and A. A. Pesqueira, “A photoelastic and strain gauge comparison of two attachments for obturator prostheses,” J Prosthet Dent, vol. 117, no. 5, pp. 685–689, May 2017, doi: 10.1016/j.prosdent.2016.07.025. [54]M. C. Goiato et al., “Stress distribution in implant-supported prostheses using different connection systems and cantilever lengths: digital photoelasticity,” J Med Eng Technol, vol. 40, no. 2, pp. 35–42, Feb. 2016, doi: 10.3109/03091902.2015.1127440. [55]J.-I. Lee, Y. Lee, Y.-L. Kim, and H.-W. Cho, “Effect of implant number and distribution on load transfer in implant-supported partial fixed dental prostheses for the anterior maxilla: A photoelastic stress analysis study,” J Prosthet Dent, vol. 115, no. 2, pp. 161–169, Feb. 2016, doi: 10.1016/j.prosdent.2015.08.021. [56]K. A. Lencioni, A. P. Macedo, R. C. Silveira Rodrigues, R. F. Ribeiro, and R. P. Almeida, “Photoelastic comparison of as-cast and laser-welded implant frameworks,” J Prosthet Dent, vol. 114, no. 5, pp. 652–659, Nov. 2015, doi: 10.1016/j.prosdent.2015.06.005. [57]A. G. C. Presotto, V. A. R. Barão, C. L. B. Bhering, and M. F. Mesquita, “Dimensional precision of implant-supported frameworks fabricated by 3D printing,” J Prosthet Dent, vol. 122, no. 1, pp. 38–45, Jul. 2019, doi: 10.1016/j.prosdent.2019.01.019. [58]A. G. C. Presotto, C. L. B. Bhering, M. F. Mesquita, and V. A. R. Barão, “Marginal fit and photoelastic stress analysis of CAD-CAM and overcast 3-unit implant-supported frameworks,” J Prosthet Dent, vol. 117, no. 3, pp. 373–379, Mar. 2017, doi: 10.1016/j.prosdent.2016.06.011. [59]R. A. Tomlinson and Z. A. Taylor, “Photoelastic materials and methods for tissue biomechanics applications,” Optical Engineering, vol. 54, no. 8, p. 081208, May 2015, doi: 10.1117/1.OE.54.8.081208. [60]S. E. Falconer, Z. A. Taylor, and R. A. Tomlinson, “Developing a soft tissue surrogate for use in photoelastic testing,” Mater Today Proc, vol. 7, pp. 537–544, 2019, doi: 10.1016/j.matpr.2018.12.005. [61]B. J. Doyle, J. Killion, and A. Callanan, “Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models,” J Biomech, vol. 45, no. 10, pp. 1759–1768, Jun. 2012, doi: 10.1016/j.jbiomech.2012.05.004. [62]N. Iliescu, S. D. Pastrama, L. G. Gruionu, and G. Jiga, “Biomechanical changes of hip joint following different types of corrective osteotomy--photoelastic studies.,” Acta Bioeng Biomech, vol. 10, no. 3, pp. 65–71, 2008. [63]M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity—Issues, implementation and application,” Opt Lasers Eng, vol. 46, no. 3, pp. 257–271, Mar. 2008, doi: 10.1016/j.optlaseng.2007.09.006. [64]E. K. FRANKL, “Photoelasticity,” Nature, vol. 166, no. 4226, pp. 706–706, Oct. 1950, doi: 10.1038/166706a0. [65]T. Liu, “Full field automated photoelasticity using two-load-step method,” Optical Engineering, vol. 40, no. 8, p. 1629, Aug. 2001, doi: 10.1117/1.1386372. [66]K. Ramesh and S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications,” Opt Lasers Eng, vol. 135, p. 106186, Dec. 2020, doi: 10.1016/j.optlaseng.2020.106186. [67]K. Ramesh and D. K. Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Opt Lasers Eng, vol. 33, no. 6, pp. 387–400, Jun. 2000, doi: 10.1016/S0143-8166(00)00076-2. [68]T. Y. Chen, “Digital determination of photoelastic birefringence using two wavelengths,” Exp Mech, vol. 37, no. 3, pp. 232–236, Sep. 1997, doi: 10.1007/BF02317412. [69]A. D. Nurse, “Full-field automated photoelasticity by use of a three-wavelength approach to phase stepping,” Appl Opt, vol. 36, no. 23, p. 5781, Aug. 1997, doi: 10.1364/AO.36.005781. [70]Y.-T. Zhang, M.-J. Huang, H.-R. Liang, and F.-Y. Lao, “Branch cutting algorithm for unwrapping photoelastic phase map with isotropic point,” Opt Lasers Eng, vol. 50, no. 5, pp. 619–631, May 2012, doi: 10.1016/j.optlaseng.2011.10.013. [71]M. J. Huang and P.-C. Sung, “Regional phase unwrapping algorithm for photoelastic phase map,” Opt Express, vol. 18, no. 2, p. 1419, Jan. 2010, doi: 10.1364/OE.18.001419. [72]P. Siegmann, D. Backman, and E. A. Patterson, “A robust approach to demodulating and unwrapping phase-stepped photoelastic data,” Exp Mech, vol. 45, no. 3, pp. 278–289, Jun. 2005, doi: 10.1007/BF02427952. [73]M. Ramji and K. Ramesh, “Adaptive Quality Guided Phase Unwrapping Algorithm for Whole‐Field Digital Photoelastic Parameter Estimation of Complex Models,” Strain, vol. 46, no. 2, pp. 184–194, Apr. 2010, doi: 10.1111/j.1475-1305.2008.00431.x. [74]M. J. Huang and H. L. An, “Temporal Phase Stepping Photoelasticity by Load or Wavelength,” 2011, pp. 73–78. doi: 10.1007/978-1-4419-9792-0_13. [75]J.-T. Wu and M.-J. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Optical Engineering, vol. 54, no. 8, p. 081207, May 2015, doi: 10.1117/1.OE.54.8.081207. [76]G. S. Grewal, V. N. Dubey, and D. J. Claremont, “Isochromatic Demodulation by Fringe Scanning,” Strain, vol. 42, no. 4, pp. 273–281, Nov. 2006, doi: 10.1111/j.1475-1305.2006.00290.x. [77]A. Ajovalasit, G. Petrucci, and M. Scafidi, “RGB Photoelasticity: Review and Improvements,” Strain, vol. 46, no. 2, pp. 137–147, Apr. 2010, doi: 10.1111/j.1475-1305.2008.00571.x. [78]K. Ramesh, V. Ramakrishnan, and C. Ramya, “New initiatives in single-colour image-based fringe order estimation in digital photoelasticity,” J Strain Anal Eng Des, vol. 50, no. 7, pp. 488–504, Oct. 2015, doi: 10.1177/0309324715600044. [79]V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light Photoelasticity – Part I: Critical assessment of existing schemes,” Opt Lasers Eng, vol. 92, pp. 129–140, May 2017, doi: 10.1016/j.optlaseng.2016.06.016. [80]F. W. Hecker and B. Morche, “Computer-Aided Measurement of Relative Retardations in Plane Photoelasticity,” in Experimental Stress Analysis, Dordrecht: Springer Netherlands, 1986, pp. 535–542. doi: 10.1007/978-94-009-4416-9_58. [81]E. A. Patterson and Z. F. Wang, “Towards full field automated photoelastic analysis of complex components,” Strain, vol. 27, no. 2, pp. 49–53, May 1991, doi: 10.1111/j.1475-1305.1991.tb00752.x. [82]A. Ajovalasit, S. Barone, and G. Petrucci, “A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity,” J Strain Anal Eng Des, vol. 33, no. 3, pp. 207–216, Apr. 1998, doi: 10.1243/0309324981512922. [83]P. L. Prashant and K. Ramesh, “Genesis of Various Optical Arrangements of Circular Polariscope in Digital Photoelasticity,” Journal of Aerospace Sciences and Technologies, pp. 29–44, Aug. 2023, doi: 10.61653/joast.v58i2.2006.703. [84]A. V. S. S. S. R. Sarma, S. A. Pillai, G. Subramanian, and T. K. Varadan, “Computerized image processing for whole-field determination of isoclinics and isochromatics,” Exp Mech, vol. 32, no. 1, pp. 24–29, Mar. 1992, doi: 10.1007/BF02317980. [85]G. M. Brown and J. L. Sullivan, “The computer-aided holophotoelastic method,” Exp Mech, vol. 30, no. 2, pp. 135–144, Jun. 1990, doi: 10.1007/BF02410239. [86]G. Petrucci, “Full-field automatic evaluation of an isoclinic parameter in white light,” Exp Mech, vol. 37, no. 4, pp. 420–426, Dec. 1997, doi: 10.1007/BF02317308. [87]M. Ramji, V. Y. Gadre, and K. Ramesh, “Comparative Study of Evaluation of Primary Isoclinic Data by Various Spatial Domain Methods in Digital Photoelasticity,” J Strain Anal Eng Des, vol. 41, no. 5, pp. 333–348, Jul. 2006, doi: 10.1243/03093247JSA127. [88]A. Asundi, L. Tong, and C. Gin Boay, “Phase-shifting method with a normal polariscope,” 1999. [89]M. Ramji and K. Ramesh, “Stress Separation in Digital Photoelasticity Part A - Photoelastic Data Unwrapping and Smoothing,” Journal of Aerospace Sciences and Technologies, pp. 5–15, Aug. 2023, doi: 10.61653/joast.v60i1.2008.811. [90]E. Guo, Y. Liu, Y. Han, D. Arola, and D. Zhang, “Full-field stress determination in photoelasticity with phase shifting technique,” Meas Sci Technol, vol. 29, no. 4, p. 045208, Apr. 2018, doi: 10.1088/1361-6501/aaa7ae. [91]Z. Xu, S. Zhang, Y. Han, X. Dong, Z. Su, and D. Zhang, “Full-field phase shifting and stress quantification using a polarization camera,” Measurement, vol. 201, p. 111727, Sep. 2022, doi: 10.1016/j.measurement.2022.111727. [92]H. Jin, C. Sciammarella, S. Yoshida, and L. Lamberti, Eds., Advancement of Optical Methods in Experimental Mechanics, Volume 3. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-06986-9. [93]R. G. R. Prasath, K. Skenes, and S. Danyluk, “Comparison of Phase Shifting Techniques for Measuring In-Plane Residual Stress in Thin, Flat Silicon Wafers,” J Electron Mater, vol. 42, no. 8, pp. 2478–2485, Aug. 2013, doi: 10.1007/s11664-013-2630-z. [94]F. Su and T. Li, “Development of an infrared polarized microscope for evaluation of high gradient stress with a small distribution area on a silicon chip,” Review of Scientific Instruments, vol. 90, no. 6, Jun. 2019, doi: 10.1063/1.5086891. [95]A. Ajovalasit, S. Barone, and G. Petrucci, “Towards RGB photoelasticity: Full-field automated photoelasticity in white light,” Exp Mech, vol. 35, no. 3, pp. 193–200, Sep. 1995, doi: 10.1007/BF02319657. [96]A. Ajovalasit, S. Barone, and G. Petrucci, “Automated photoelasticity in white light: Influence of quarter-wave plates,” J Strain Anal Eng Des, vol. 30, no. 1, pp. 29–34, Jan. 1995, doi: 10.1243/03093247V301029. [97]A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of RGB photoelasticity,” Opt Lasers Eng, vol. 68, pp. 58–73, May 2015, doi: 10.1016/j.optlaseng.2014.12.008. [98]K. Ramesh and S. S. Deshmukh, “Three fringe photoelasticity ‐ use of colour image processing hardware to automate ordering of isochromatics,” Strain, vol. 32, no. 3, pp. 79–86, Aug. 1996, doi: 10.1111/j.1475-1305.1996.tb01006.x. [99]K. Ramesh, “Total fringe order photoelasticity,” in Developments in Photoelasticity, IOP Publishing, 2021. doi: 10.1088/978-0-7503-2472-4ch4. [100]K. R. Madhu and K. Ramesh, “Noise removal in three-fringe photoelasticity by adaptive colour difference estimation,” Opt Lasers Eng, vol. 45, no. 1, pp. 175–182, Jan. 2007, doi: 10.1016/j.optlaseng.2006.03.008. [101]D. Swain, B. P. Thomas, J. Philip, and S. A. Pillai, “Non-uniqueness of the Color Adaptation Techniques in RGB Photoelasticity,” Exp Mech, vol. 55, no. 6, pp. 1031–1045, Jul. 2015, doi: 10.1007/s11340-015-9993-4. [102]A. Pandey and K. Ramesh, “Development of a New Normalization Technique for Twelve Fringe Photoelasticity (TFP),” 2019, pp. 177–180. doi: 10.1007/978-3-319-97481-1_23. [103]J. C. Briñez-de León, A. Restrepo-Martínez, and J. W. Branch-Bedoya, “Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity,” Opt Lasers Eng, vol. 122, pp. 195–208, Nov. 2019, doi: 10.1016/j.optlaseng.2019.06.004. [104]G. Petrucci, “Full-field automatic evaluation of an isoclinic parameter in white light,” Exp Mech, vol. 37, no. 4, pp. 420–426, Dec. 1997, doi: 10.1007/BF02317308. [105]K. Ramesh, MA. Kumar, and S. G. Dhande, “FUSION OF DIGITAL PHOTOELASTICITY RAPID PROTOTYPING AND RAPID TOOLING TECHNOLOGIES,” Exp Tech, vol. 23, no. 2, pp. 36–38, Mar. 1999, doi: 10.1111/j.1747-1567.1999.tb01553.x. [106]E. Hecht, Optics. [107]A. Fresnel and G. R. Putland, “Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis.” [108]D. Malacara, Ed., Optical Shop Testing. Wiley, 2007. doi: 10.1002/9780470135976. [109]P. Hariharan, Basics of Interferometry. Elsevier, 2007. doi: 10.1016/B978-0-12-373589-8.X5000-7. [110]S. Mallick and D. Malacara, “Common‐Path Interferometers,” in Optical Shop Testing, Wiley, 2007, pp. 97–121. doi: 10.1002/9780470135976.ch3. [111]O. W. Richards, M. Francon, and S. Mallick, “Polarization Interferometers/Application in Microscopy and Macroscopy,” Trans Am Microsc Soc, vol. 92, no. 2, p. 317, Apr. 1973, doi: 10.2307/3224945. [112]I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig, Handbook of Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-46221-8. [113]R. G. R. Prasath, T. Newton, and S. Danyluk, “Stress monitoring of PET beverage bottles by Digital Photoelasticity,” Manuf Lett, vol. 15, pp. 9–13, Jan. 2018, doi: 10.1016/j.mfglet.2017.12.010. [114]K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” Journal of the Optical Society of America A, vol. 13, no. 4, p. 832, Apr. 1996, doi: 10.1364/JOSAA.13.000832. [115]Jan J. Tuma and Ronald A. Walsh, Engineering mathematics handbook (4th ed.), McGraw-Hill. 1998. [116]I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig, Handbook of Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. doi: 10.1007/978-3-662-46221-8. [117]J. A. Quiroga, Á. Garcı́a-Botella, and J. A. Gómez-Pedrero, “Improved method for isochromatic demodulation by RGB calibration,” Appl Opt, vol. 41, no. 17, p. 3461, Jun. 2002, doi: 10.1364/AO.41.003461. [118]G. A. Papadopoulos and N. Moscos, “Crack-tip isochromatic and isopachic fringes at a bi-material interface,” Int J Fract, vol. 141, no. 1–2, pp. 327–332, Sep. 2006, doi: 10.1007/s10704-006-8474-2. [119]Z. Lei, H. Yun, D. Yun, and Y. Kang, “Numerical analysis of phase-stepping interferometric photoelasticity for plane stress separation,” Opt Lasers Eng, vol. 45, no. 1, pp. 77–82, Jan. 2007, doi: 10.1016/j.optlaseng.2006.05.007. [120]S. Yoneyama, Y. Morimoto, and M. Kawamura, “Two-dimensional stress separation using phase-stepping interferometric photoelasticity,” Meas Sci Technol, vol. 16, no. 6, pp. 1329–1334, Jun. 2005, doi: 10.1088/0957-0233/16/6/014. [121]Q. Wu and I. J. Hodgkinson, “Materials for Birefringent Coatings.” [122]K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-Light Analysis of Birefringent Coatings for Distributed Polarization Rotators.” [123]A. D. Slepkov, “Quantitative measurement of birefringence in transparent films across the visible spectrum,” Am J Phys, vol. 90, no. 8, pp. 625–634, Aug. 2022, doi: 10.1119/5.0087798.
|