跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林晨心
研究生(外文):LIN, CHEN-HSIN
論文名稱:真空燒結法對添加鎳及碳化鉻微粉之鈦鈮鉬中熵合金的顯微組織與機械性質之影響
論文名稱(外文):Effects of the Microstructure and Mechanical Properties of Ni and Cr3C2 Powders Added to Ti-Nb-Mo Medium Entropy Alloys through the Vacuum Sintering Process
指導教授:張世賢張世賢引用關係梁誠梁誠引用關係
指導教授(外文):CHANG, SHIH-HSIENLIANG, CHENG
口試委員:張世賢梁誠陳貞光黃國聰
口試委員(外文):CHANG, SHIH-HSIENLIANG, CHENGCHEN, JHEWN-KUANGHUANG, KUO-TSUNG
口試日期:2024-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:99
中文關鍵詞:鈦合金粉末冶金鈦鈮鉬中熵合金真空燒結碳化鉻橫向破裂強度場發射電子微探儀
外文關鍵詞:Titanium AlloysPowder MetallurgyTi-Nb-Mo Medium Entropy AlloysVacuum SinteringCr3C2Transverse Rupture StrengthFE-EPMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金具有高比強度、低彈性模量及良好的耐腐蝕性與優異的生物相容性等傑出性質,被廣泛應用於航空航太、汽車工業以及生物醫學領域。而近年來,相關研究添加不同β穩定元素的鈦合金,例如鈮和鉬,藉以開發具有較低彈性模數,以及更好生物相容性的低成本β型鈦合金。另一方面,目前中熵合金及高熵合金的製程多以電弧熔煉法為主,需耗費較多的能源且成本較高,在過程中容易因為元素的熔點、密度差異造成組織不均勻。因此近期開始研究以粉末冶金法製備,這是一種能製造具有複雜形狀的高質量鈦合金零件之經濟高效製程,其作為一種近淨成形技術,能夠降低生產成本、提升組織均勻性及減少材料浪費。
本研究以粉末冶金法製備鈦鈮鉬中熵合金,第一階段使用鈦粉、鈮粉、鉬粉與鎳粉四種純金屬粉末,配製成Ti-25Nb-25Mo-5Ni、Ti-25Nb-25Mo-10Ni、Ti-25Nb-25Mo-15Ni和Ti-25Nb-25Mo-20Ni 四種不同成分之中熵合金,於1175°C、1200°C和1225°C之溫度下進行真空燒結,並持溫一小時。而第二階段是以第一階段之最佳參數的鈦鈮鉬鎳中熵合金,分別加入1、3與5 wt%的碳化鉻微粉,並於1150°C、1175°C、1200°C和1225°C之溫度下進行真空燒結,持溫一小時。燒結完成之試片會進行體收縮率、視孔隙率、硬度、橫向破裂強度(TRS)及撓曲模數的測量與試驗來評估中熵合金的機械性質。並使用掃描式電子顯微鏡(SEM)、X光繞射(XRD)和光學顯微鏡(OM)進行顯微組織的觀察,並且會對第二階段綜合性質最佳之參數的Ti-25Nb-25Mo-15Ni-1Cr3C2複合材料,使用場發射電子微探儀(FE-EPMA)進行更進一步的顯微組織分析。
第一階段實驗結果顯示,燒結溫度為1225°C之Ti-25Nb-25Mo-15Ni中熵合金具有最佳之綜合性質,其體收縮率為30.55%,視孔隙率1.10%、硬度72.9 HRA、橫向破裂強度607.36 MPa以及撓曲模數54.9 GPa。因此,本研究第二階段選擇Ti-25Nb-25Mo-15Ni中熵合金添加Cr3C2微粉進行第二階段的後續分析;研究結果顯示,燒結溫度為1225°C之添加1 wt% Cr3C2的Ti-25Nb-25Mo-15Ni-1Cr3C2複合材料具有最佳之綜合性質,其體收縮率34.71%、視孔隙率0.17%、硬度75.88 HRA、橫向破裂強度為684.23 MPa以及撓曲模數69.64 GPa。研究結果亦顯示鈮、鉬及鉻能與鈦形成良好之固溶體,達成固溶強化之效果,同時鎳會與鈦生成TiNi及Ti2Ni金屬間化合物,散佈在基地中阻礙差排滑移,有效提升其機械性質。
Due to the high specific strength, low elastic modulus, good corrosion resistance, and superior biocompatibility, titanium alloys have been extensively used in aerospace, automotive industries, and biomedicine. In recent years, several Ti alloys with different β stabilizing elements, e.g., Nb and Mo, were studied to develop low-cost β-Ti alloys with lower Young's modulus and better biocompatibility. On the other hand, the process of producing medium entropy alloys and high entropy alloys is primarily vacuum arc remelting, which requires more energy and higher costs. In the process, inhomogeneous microstructures may occur due to differences in melting points and densities of the elements. As a result, studies have recently begun using powder metallurgy to produce these alloys, which is a cost- effective manufacturing method for high quality Ti alloy parts with complex shapes. As a near-net-shape technique, it reduces production costs, improves microstructural homogeneity, and minimizes material waste.
This study fabricated Ti-Nb-Mo medium entropy alloy by powder metallurgy. In the first part of this study, four different metal powders (Ti, Nb, Mo and Ni) were uniformly mixed and used to produce four different proportions medium entropy alloys: Ti-25Nb-25Mo-5Ni, Ti-25Nb-25Mo-10Ni, Ti-25Nb-25Mo-15Ni and Ti-25Nb-25Mo-20Ni. Furthermore, Ti-based medium entropy alloys were vacuum sintered at temperatures of 1175°C, 1200°C, and 1225°C for 1 h. In the second part of this study, the Ti-Nb-Mo-Ni medium entropy alloy with the optimal parameters from the first part was mixed with 1, 3, and 5 wt% of Cr3C2 powder, and vacuum sintered at temperatures of 1150°C, 1175°C, 1200°C, and 1225°C for 1 h, respectively. Then, the mechanical properties of the Ti-25Nb-25Mo-15Ni-1Cr3C2 composites were evaluated by measuring the volume shrinkage, porosity, hardness, TRS, and flexural modulus. Finally, the microstructures were examined with SEM, XRD, OM, and FE-EPMA to analyze the microstructures of the optimal sintered parameters of the second part.
The first part of the experimental results showed that the Ti-25Nb-25Mo-15Ni medium entropy alloys sintered at 1225°C for 1 h had the best overall properties, with volume shrinkage 30.55%, porosity 1.10%, hardness 72.9 HRA, TRS 607.36 MPa, and flexural modulus of 54.9 GPa. Accordingly, for the second part of this study, Ti-25Nb-25Mo-15Ni was selected with Cr3C2 powder added for further analysis. The results showed that Ti-25Nb- 25Mo-15Ni-1Cr3C2 composites with 1 wt% Cr3C2 added and sintered at 1225°C had the best overall properties, with volume shrinkage 34.71%, porosity 0.17%, hardness 75.88 HRA, TRS 684.23 MPa, and flexural modulus of 69.64 GPa. The research results show that niobium, molybdenum, and chromium can form a good solid solution with titanium to achieve the solid-solution strengthening effect. Moreover, nickel can form TiNi and Ti2Ni intermetallic with titanium, which are dispersed in the titanium matrix and effectively enhance its mechanical properties.
摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 文獻回顧 3
2.1 高熵合金 3
2.1.1 高熵合金簡介 3
2.1.2 高熵合金之四大效應 4
2.2 鈦及鈦合金 6
2.2.1 鈦合金的特性 7
2.2.2 鈦合金的分類 9
2.3 鈦合金內元素及碳化物之作用 13
2.3.1. 鈮(Niobium, Nb) 13
2.3.2. 鉬(Molybdenum, Mo) 14
2.3.3. 鎳(Nickel, Ni) 14
2.3.4. 碳化鉻(Chromium Carbide, Cr3C2) 15
2.4 粉末冶金(Powder Metallurgy, PM) 16
2.4.1 燒結原理 16
2.4.2 液相燒結(Liquid Phase Sintering) 17
2.4.3 反應燒結 18
2.5 強化機制 19
2.5.1 固溶強化(Solid Solution Strengthening) 19
2.5.2 細晶強化(Fine Grain Size) 21
2.5.3 析出強化(Precipitation Strangthening) 22
2.5.4 散佈強化(Dispersion Strengthening) 22
第三章 實驗流程與研究方法 23
3.1 實驗步驟與流程 23
3.1.1 粉末配製 24
3.1.2 混合粉末 24
3.1.3 成形 25
3.1.4 真空燒結 26
3.2 材料分析 27
3.2.1 雷射粒徑分析 27
3.2.2 結構組織分析 28
3.2.3 材料性質分析 33
第四章 結果與討論 36
4.1 分析粉末形貌與粒徑大小 36
4.1.1 基材粉末分析 36
4.1.2 混合後之Ti-25Nb-25Mo-xNi粉末 38
4.1.3 混合後之Ti-25Nb-25Mo-15Ni-xCr3C2粉末 38
4.2 鈦鈮鉬鎳中熵合金性質 39
4.2.1 燒結性質分析 39
4.2.2 顯微組織分析 42
4.2.3 機械性質分析 54
4.2.4 腐蝕特性分析 59
4.2.5 Ti-25Nb-25Mo-xNi中熵合金性質之小結 60
4.3 鈦鈮鉬鎳合金添加Cr3C2後之性質 61
4.3.1 分析添加Cr3C2後之燒結性質 61
4.3.2 分析添加Cr3C2後之顯微組織 64
4.3.3 分析添加Cr3C2後之機械性質 76
4.3.4 分析添加Cr3C2後之腐蝕特性 82
4.3.5 分析添加Cr3C2後之相組成與微結構 83
第五章 結論 92
參考文獻 94




[1]V. T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang and J. Zou, "A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA)," Intermetallics, vol. 101, 2018, pp. 39-43.
[2]K. T. Huang, S. H. Chang, Y. F. Chen, C. Liang and C. L. Li, "Investigation of the microstructural characteristics and mechanical properties of vacuum-sintered Ti–8Mo–3Mn-xVC composites," Vacuum, vol. 222, 2024, 113035.
[3]P. Sochacka, A. Miklaszewski and M. Jurczyk, "Development of β-type Ti-x at. % Mo alloys by mechanical alloying and powder metallurgy: Phase evolution and mechanical properties (10 ≤ x ≤ 35)," Journal of Alloys and Compounds, vol. 776, 2019, pp. 370-378.
[4]S. Hu, T. Li, Z. Su and Dexue Liu, "Research on suitable strength, elastic modulus and abrasion resistance of Ti–Zr–Nb medium entropy alloys (MEAs) for implant adaptation," Intermetallics, vol. 140, 2022, 107401.
[5]Y. Alshammari, F. Alqattan, F. Yang and L. Bolzoni, "Vacuum sintering and solution plus aging heat treatment of β eutectoid bearing binary Ti alloy," International Journal of Refractory Metals and Hard Materials, vol. 91, 2020, 105267.
[6]黃坤祥,粉末冶金學(第三版),臺北:高等教育出版社,2021,第1-567頁。
[7]李勝隆,金屬熱處理原理與應用,新北:全華圖書股份有限公司,2018,第21-401頁。
[8]金培鵬、韓麗、王金輝,輕金屬基複合材料,北京:國防工業出版社,2013,第1-330頁。
[9]B. Manogar, F. Yang and Leandro Bolzoni, "Correlation between microstructure and tensile properties of powder metallurgy Ti-6Nb-x(Fe or Mn) alloys," Journal of Alloys and Compounds, vol. 926, 2022, 166805.
[10]W. Yan, M. Wu, X. Huang, L. Zhang and X.Qu, "Investigations of the microstructure and mechanical properties of the Nb-Ti/Nb-Ti-Ni brazed joints," Materials Today Communications, vol. 35, 2023, 106190.
[11]S.G. Huang, C. Liu, B.L. Liu, J. Vleugels, J.H. Huang, B. Lauwers, J. Qian and H. Mohrbacher, "Microstructure and mechanical properties of (Nb,W,Ti)(C,N)-Ni solid solution cermets with 6 to 20 wt% Ni," International Journal of Refractory Metals and Hard Materials, vol. 103, 2022, 105757.
[12]S. Xu, C. Zhou, Y. Liu, B. Liu and K. Li, "Microstructure and mechanical properties of Ti-15Mo-xTiC composites fabricated by in-situ reactive sintering and hot swaging," Journal of Alloys and Compounds, vol. 739, 2018, pp. 188-196.
[13]O. F. Dippo and K. S. Vecchio, "A universal configurational entropy metric for high-entropy materials," Scripta Materialia, vol. 201, 2021, 113974.
[14]M. H. Tsai and J. W. Yeh, "High-entropy alloys: a critical review," Materials Research Letters, vol. 2, 2014, pp. 107-123.13
[15]張勇、陳明彪、楊瀟,先進高熵合金技術,中國北京市:化學工業出版社,2018,第11-20頁。
[16]E. J. Pickering and N. G. Jones, "High-entropy alloys: a critical assessment of their founding principles and future prospects," International Materials Reviews, vol. 61, 2016, pp. 183-202.
[17]J. W. Yeh, "Physical metallurgy of high-entropy alloys," JOM, vol. 67, 2015, pp. 2254-2261.
[18]B. X. Cao, C. Wang, T. Yang and C.T. Liu, "Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures," Scripta Materialia, vol. 187, 2020, pp. 250-255.
[19]趙永慶、辛社偉、陳永楠、毛小南,新型合金材料-鈦合金,北京:中國鐵道出版社,2017,第5-60頁。
[20]趙永慶、陳永楠、張學敏、曾衛東、王磊,鈦合金相變及熱處理,長沙:中南大學出版社,2012,第2-122頁。
[21]S. H. Chang, C. H. Chang and K. T. Huang, "In situ TEM observation of the microstructure characteristics of the vacuum sintering, sub-zero and heat treatments of Vanadis 23 high-speed steel by adding Cr3C2–TaC–TiC powders," Powder Metallurgy, vol. 66, 2023, pp. 151-163.
[22]S. Wei, L. Huang, X. Li, Y. Jiao , W. Ren and L. Geng, "Correction to: network-strengthened Ti-6Al-4V/(TiC+TiB) composites: powder metallurgy processing and enhanced tensile properties at elevated temperatures," Metallurgical and Materials Transactions A, vol. 51, 2020, 1437.
[23]陳韻芳,真空燒結法對添加VC微粉之鈦鉬錳合金的顯微組織與強化機制之影響,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2023。
[24]梁乃云,鈦鉭鉬基中熵合金添加銅、鎳微粉的顯微組織與性質之探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2023。
[25]黃怡文,真空燒結法對添加TaC微粉之鈦鈮錳合金的顯微組織與機械性質之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2022。
[26]F. C. Campbell, Phase Diagrams: Understanding the Basics, United States of America:
ASM International, 2012.
[27]J. H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals, Oxford : Butterworth-Heinemann, 2015, pp. 1-54.
[28]Y. Tian, X. Chen, Y. Cai, Z. Luo, M. Chen, X. Zhang, J. Li and J. Han, "Microstructure and properties of a Ni–Ti–Cr–Mo–Nb alloy fabricated in situ by dual-wire arc additive manufacturing," Materials Science and Engineering: A, vol. 853, 2022, 143740.
[29]A. Patra, R. Saxena, S.K. Karak, T. Laha and S.K. Sahoo,"Fabrication and characterization of nano-Y2O3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys by mechanical alloying and spark plasma sintering," Journal of Alloys and Compounds, vol. 707, 2017, pp. 245-250.
[30]X. Yi, L. Sheng, G. Fu, K. Sun, Q. Yang, H. Wang, X. Cao, X. Tang, X. Meng, Z. Gao, J. Chan and S. Zhang, "Insights into the martensitic transformation kinetics and mechanical properties of quaternary Ti–Ni–Nb–V shape memory alloys," Journal of Materials Research and Technology, vol. 19, 2022, pp. 557-565.
[31]陳哲揚,真空燒結和熱處理對添加HfC及HfC-Ta60Nb40C微粉於Vanadis60高速鋼其顯微組織與機械性質之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2022。
[32]周紜煒,粉末冶金法製備鈦鉭錳合金添加碳化鎢微粉的顯微組織與強化機制之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2022。
[33]C. Wang, Q. Cai, J. Liu and X. Yan, "Strengthening mechanism of lamellar-structured Ti–Ta alloys prepared by powder metallurgy," Journal of Materials Research and Technology, vol. 21, 2022, pp. 2868-2879.
[34]Z. Li, H. Xu, A. Dong, J. Qiu, L. He, T. Zhang, D. Du, H. Xing, G. Zhu, D. Wang and B. Sun, "Characteristics of Ti-Nb-Mg alloy by powder metallurgy for biomedical applications," Materials Characterization, vol. 173, 2021, 110953.
[35]E. S. Panina, N. Yu Yurchenko, S. V. Zherebtsov, M. A. Tikhonovsky, M. V. Mishunin and N. D. Stepanov, "Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys," Materials Science and Engineering: A, vol. 786, 2020, 139409.
[36]Y. Alshammari, F. Yang and L. Bolzoni, "Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications," Journal of the Mechanical Behavior of Biomedical Materials, vol. 126, 2022, 105022.
[37]H. Jeong, D. Kim and C. Lee, "Multi-material deposition of Inconel 718 and Ti–6Al–4V using the Ti–Nb–Cr–V–Ni high entropy alloy intermediate layer," Journal of Materials Research and Technology, vol. 29, 2024, pp. 3217-3227.
[38]H. S. Ren, Y. L. Shang, X. Y. Ren, Y. J. Jing, H. P. Xiong and Y. Y. Cheng, "Microstructure and mechanical properties of TiAl/TiAl joints brazed with a newly developed Ti–Ni–Nb–Zr quaternary filler alloy," Progress in Natural Science: Materials International, vol. 32, 2022, pp. 758-768.
[39]J. Han, B. Liu, X. Chen, G. Zhang, L. Lu, Y. Xin, Z. Luo, X. Zhang, Y. Cai and Y. Tian, "Wire and arc additive manufactured an innovative material Ti-Al-V-Ni-Cr-Mo-Nb-Cu alloy: Study of its microstructure and mechanical properties," Materials Letters, vol. 330, 2023, 133304.
[40]O. Molnárová, M. Klinger, J. Duchoň, H. Seiner and P. Šittner, "Plastic deformation of B19’ monoclinic martensite in NiTi shape memory alloys: HRTEM analysis of interfaces in martensite variant microstructures," Acta Materialia, vol. 258, 2023, 119242.
[41]Y. Chen, H. C. Jiang, S. W. Liu, L. J. Rong and X. Q. Zhao, "The effect of Mo additions to high damping Ti–Ni–Nb shape memory alloys," Materials Science and Engineering: A, vol. 512, 2009, pp. 26-31.
[42]X. Y. Zhang and H. Sehitoglu, "Crystallography of the B2 → R → B19′ phase transformations in NiTi," Materials Science and Engineering: A, vol. 374, 2004, pp. 292-302.
[43]T. Zhang, C. Chen, R. Li and K. Zhou, " Effect of Cr content on the microstructure and mechanical properties of Ti–Cr alloys manufactured by laser directed energy deposition," Materials Science and Engineering: A, vol. 893, 2024, 146143.
[44]A. I. Gusev, "Phase equilibria, phases and compounds in the Ti–C system," Russian Chemical Reviews, vol. 71, 2002, pp. 439-463.
[45]林峻丞,真空燒結法對鈦銅鉬合金添加不同碳化物之顯微組織與強化機制探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2013。
[46]王瑋德,真空燒結法對添加不同碳化物之鈦鎳鉬合金的微觀組織與強化機制探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2015。
[47]J. Han, M. Gao, Y. Yu, X. Lu, C. Blawert, H. Wang, Z. Jiang, D. Zhang, Y Jiang, J. Hu and M. L. Zheludkevich, "Improving corrosion resistance of Ti alloy in hydrochloric acid by embedding TiC/TiB and Y2O3 ceramic nano-particles," Corrosion Science, vol. 215, 2023, 111013.
[48]T. Chakrabarti and S. Manna, "Zener pinning through coherent precipitate: A phase-field study," Computational Materials Science, vol. 154, 2018, pp. 84-90.
[49]H. Zhang, W. Wang, L. Yuan, Z. Wei, H. Zhang and W. Zhang, "Quantitative phase analysis of Ti-3Al-5Mo-4.5 V dual phase titanium alloy by XRD whole pattern fitting method," Materials Characterization, vol. 187, 2022, 111854.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊