[1]V. T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang and J. Zou, "A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA)," Intermetallics, vol. 101, 2018, pp. 39-43.
[2]K. T. Huang, S. H. Chang, Y. F. Chen, C. Liang and C. L. Li, "Investigation of the microstructural characteristics and mechanical properties of vacuum-sintered Ti–8Mo–3Mn-xVC composites," Vacuum, vol. 222, 2024, 113035.
[3]P. Sochacka, A. Miklaszewski and M. Jurczyk, "Development of β-type Ti-x at. % Mo alloys by mechanical alloying and powder metallurgy: Phase evolution and mechanical properties (10 ≤ x ≤ 35)," Journal of Alloys and Compounds, vol. 776, 2019, pp. 370-378.
[4]S. Hu, T. Li, Z. Su and Dexue Liu, "Research on suitable strength, elastic modulus and abrasion resistance of Ti–Zr–Nb medium entropy alloys (MEAs) for implant adaptation," Intermetallics, vol. 140, 2022, 107401.
[5]Y. Alshammari, F. Alqattan, F. Yang and L. Bolzoni, "Vacuum sintering and solution plus aging heat treatment of β eutectoid bearing binary Ti alloy," International Journal of Refractory Metals and Hard Materials, vol. 91, 2020, 105267.
[6]黃坤祥,粉末冶金學(第三版),臺北:高等教育出版社,2021,第1-567頁。
[7]李勝隆,金屬熱處理原理與應用,新北:全華圖書股份有限公司,2018,第21-401頁。
[8]金培鵬、韓麗、王金輝,輕金屬基複合材料,北京:國防工業出版社,2013,第1-330頁。
[9]B. Manogar, F. Yang and Leandro Bolzoni, "Correlation between microstructure and tensile properties of powder metallurgy Ti-6Nb-x(Fe or Mn) alloys," Journal of Alloys and Compounds, vol. 926, 2022, 166805.
[10]W. Yan, M. Wu, X. Huang, L. Zhang and X.Qu, "Investigations of the microstructure and mechanical properties of the Nb-Ti/Nb-Ti-Ni brazed joints," Materials Today Communications, vol. 35, 2023, 106190.
[11]S.G. Huang, C. Liu, B.L. Liu, J. Vleugels, J.H. Huang, B. Lauwers, J. Qian and H. Mohrbacher, "Microstructure and mechanical properties of (Nb,W,Ti)(C,N)-Ni solid solution cermets with 6 to 20 wt% Ni," International Journal of Refractory Metals and Hard Materials, vol. 103, 2022, 105757.
[12]S. Xu, C. Zhou, Y. Liu, B. Liu and K. Li, "Microstructure and mechanical properties of Ti-15Mo-xTiC composites fabricated by in-situ reactive sintering and hot swaging," Journal of Alloys and Compounds, vol. 739, 2018, pp. 188-196.
[13]O. F. Dippo and K. S. Vecchio, "A universal configurational entropy metric for high-entropy materials," Scripta Materialia, vol. 201, 2021, 113974.
[14]M. H. Tsai and J. W. Yeh, "High-entropy alloys: a critical review," Materials Research Letters, vol. 2, 2014, pp. 107-123.13
[15]張勇、陳明彪、楊瀟,先進高熵合金技術,中國北京市:化學工業出版社,2018,第11-20頁。
[16]E. J. Pickering and N. G. Jones, "High-entropy alloys: a critical assessment of their founding principles and future prospects," International Materials Reviews, vol. 61, 2016, pp. 183-202.
[17]J. W. Yeh, "Physical metallurgy of high-entropy alloys," JOM, vol. 67, 2015, pp. 2254-2261.
[18]B. X. Cao, C. Wang, T. Yang and C.T. Liu, "Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures," Scripta Materialia, vol. 187, 2020, pp. 250-255.
[19]趙永慶、辛社偉、陳永楠、毛小南,新型合金材料-鈦合金,北京:中國鐵道出版社,2017,第5-60頁。
[20]趙永慶、陳永楠、張學敏、曾衛東、王磊,鈦合金相變及熱處理,長沙:中南大學出版社,2012,第2-122頁。
[21]S. H. Chang, C. H. Chang and K. T. Huang, "In situ TEM observation of the microstructure characteristics of the vacuum sintering, sub-zero and heat treatments of Vanadis 23 high-speed steel by adding Cr3C2–TaC–TiC powders," Powder Metallurgy, vol. 66, 2023, pp. 151-163.
[22]S. Wei, L. Huang, X. Li, Y. Jiao , W. Ren and L. Geng, "Correction to: network-strengthened Ti-6Al-4V/(TiC+TiB) composites: powder metallurgy processing and enhanced tensile properties at elevated temperatures," Metallurgical and Materials Transactions A, vol. 51, 2020, 1437.
[23]陳韻芳,真空燒結法對添加VC微粉之鈦鉬錳合金的顯微組織與強化機制之影響,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2023。[24]梁乃云,鈦鉭鉬基中熵合金添加銅、鎳微粉的顯微組織與性質之探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2023。[25]黃怡文,真空燒結法對添加TaC微粉之鈦鈮錳合金的顯微組織與機械性質之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2022。[26]F. C. Campbell, Phase Diagrams: Understanding the Basics, United States of America:
ASM International, 2012.
[27]J. H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals, Oxford : Butterworth-Heinemann, 2015, pp. 1-54.
[28]Y. Tian, X. Chen, Y. Cai, Z. Luo, M. Chen, X. Zhang, J. Li and J. Han, "Microstructure and properties of a Ni–Ti–Cr–Mo–Nb alloy fabricated in situ by dual-wire arc additive manufacturing," Materials Science and Engineering: A, vol. 853, 2022, 143740.
[29]A. Patra, R. Saxena, S.K. Karak, T. Laha and S.K. Sahoo,"Fabrication and characterization of nano-Y2O3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys by mechanical alloying and spark plasma sintering," Journal of Alloys and Compounds, vol. 707, 2017, pp. 245-250.
[30]X. Yi, L. Sheng, G. Fu, K. Sun, Q. Yang, H. Wang, X. Cao, X. Tang, X. Meng, Z. Gao, J. Chan and S. Zhang, "Insights into the martensitic transformation kinetics and mechanical properties of quaternary Ti–Ni–Nb–V shape memory alloys," Journal of Materials Research and Technology, vol. 19, 2022, pp. 557-565.
[31]陳哲揚,真空燒結和熱處理對添加HfC及HfC-Ta60Nb40C微粉於Vanadis60高速鋼其顯微組織與機械性質之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2022。[32]周紜煒,粉末冶金法製備鈦鉭錳合金添加碳化鎢微粉的顯微組織與強化機制之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2022。[33]C. Wang, Q. Cai, J. Liu and X. Yan, "Strengthening mechanism of lamellar-structured Ti–Ta alloys prepared by powder metallurgy," Journal of Materials Research and Technology, vol. 21, 2022, pp. 2868-2879.
[34]Z. Li, H. Xu, A. Dong, J. Qiu, L. He, T. Zhang, D. Du, H. Xing, G. Zhu, D. Wang and B. Sun, "Characteristics of Ti-Nb-Mg alloy by powder metallurgy for biomedical applications," Materials Characterization, vol. 173, 2021, 110953.
[35]E. S. Panina, N. Yu Yurchenko, S. V. Zherebtsov, M. A. Tikhonovsky, M. V. Mishunin and N. D. Stepanov, "Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys," Materials Science and Engineering: A, vol. 786, 2020, 139409.
[36]Y. Alshammari, F. Yang and L. Bolzoni, "Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications," Journal of the Mechanical Behavior of Biomedical Materials, vol. 126, 2022, 105022.
[37]H. Jeong, D. Kim and C. Lee, "Multi-material deposition of Inconel 718 and Ti–6Al–4V using the Ti–Nb–Cr–V–Ni high entropy alloy intermediate layer," Journal of Materials Research and Technology, vol. 29, 2024, pp. 3217-3227.
[38]H. S. Ren, Y. L. Shang, X. Y. Ren, Y. J. Jing, H. P. Xiong and Y. Y. Cheng, "Microstructure and mechanical properties of TiAl/TiAl joints brazed with a newly developed Ti–Ni–Nb–Zr quaternary filler alloy," Progress in Natural Science: Materials International, vol. 32, 2022, pp. 758-768.
[39]J. Han, B. Liu, X. Chen, G. Zhang, L. Lu, Y. Xin, Z. Luo, X. Zhang, Y. Cai and Y. Tian, "Wire and arc additive manufactured an innovative material Ti-Al-V-Ni-Cr-Mo-Nb-Cu alloy: Study of its microstructure and mechanical properties," Materials Letters, vol. 330, 2023, 133304.
[40]O. Molnárová, M. Klinger, J. Duchoň, H. Seiner and P. Šittner, "Plastic deformation of B19’ monoclinic martensite in NiTi shape memory alloys: HRTEM analysis of interfaces in martensite variant microstructures," Acta Materialia, vol. 258, 2023, 119242.
[41]Y. Chen, H. C. Jiang, S. W. Liu, L. J. Rong and X. Q. Zhao, "The effect of Mo additions to high damping Ti–Ni–Nb shape memory alloys," Materials Science and Engineering: A, vol. 512, 2009, pp. 26-31.
[42]X. Y. Zhang and H. Sehitoglu, "Crystallography of the B2 → R → B19′ phase transformations in NiTi," Materials Science and Engineering: A, vol. 374, 2004, pp. 292-302.
[43]T. Zhang, C. Chen, R. Li and K. Zhou, " Effect of Cr content on the microstructure and mechanical properties of Ti–Cr alloys manufactured by laser directed energy deposition," Materials Science and Engineering: A, vol. 893, 2024, 146143.
[44]A. I. Gusev, "Phase equilibria, phases and compounds in the Ti–C system," Russian Chemical Reviews, vol. 71, 2002, pp. 439-463.
[45]林峻丞,真空燒結法對鈦銅鉬合金添加不同碳化物之顯微組織與強化機制探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2013。[46]王瑋德,真空燒結法對添加不同碳化物之鈦鎳鉬合金的微觀組織與強化機制探討,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北,2015。[47]J. Han, M. Gao, Y. Yu, X. Lu, C. Blawert, H. Wang, Z. Jiang, D. Zhang, Y Jiang, J. Hu and M. L. Zheludkevich, "Improving corrosion resistance of Ti alloy in hydrochloric acid by embedding TiC/TiB and Y2O3 ceramic nano-particles," Corrosion Science, vol. 215, 2023, 111013.
[48]T. Chakrabarti and S. Manna, "Zener pinning through coherent precipitate: A phase-field study," Computational Materials Science, vol. 154, 2018, pp. 84-90.
[49]H. Zhang, W. Wang, L. Yuan, Z. Wei, H. Zhang and W. Zhang, "Quantitative phase analysis of Ti-3Al-5Mo-4.5 V dual phase titanium alloy by XRD whole pattern fitting method," Materials Characterization, vol. 187, 2022, 111854.