跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃冠傑
研究生(外文):HUANG, GUAN-JIE
論文名稱:熱處理對選擇性雷射熔融純銅性能之影響研究
論文名稱(外文):Effect of Heat Treatment on the Properties of Copper Prepared by Selective Laser Melting
指導教授:陳貞光
指導教授(外文):CHEN, JHEWN-KUANG
口試委員:陳貞光邱國基邱揚淳
口試委員(外文):CHEN, JHEWN-KUANGCHIU, KUO-CHICHIU, YANG-CHUN
口試日期:2024-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:69
中文關鍵詞:選擇性雷射熔融(SLM)熱處理熱膨脹熱導率導電率
外文關鍵詞:Selective Laser Melting(SLM)CopperHeat treatmentThermal ExpansionThermal ConductivityElectrical Conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對選擇性雷射熔融純銅,在不同溫度下進行熱處理後,對樣品的密度、晶粒結構、導電率及熱傳導等性能進行了測量和分析。結果顯示,孔隙率隨著熱處理溫度由100°C提高至1000°C而增加,相對密度由As-built的99.8%下降至99.4%,並可觀察孔洞明顯擴散至晶界上的現象。在600°C以上熱處理的銅材中可以觀察到明顯的再結晶與高角度晶界的形成。此外,200-400°C熱處理由於組織回復的活動有助於提升純銅的熱導率和導電率,導電率達94%IACS;400°C熱處理後,則熱導率為400 W/m∙K,與國際標準值相近。但以更高溫的熱處理後,再結晶造成孔洞大量轉移到晶界,因此產生高於傳統製造純銅的膨脹率,熱導也因孔洞的增加,降低到373W/m∙K,電導則因為再結晶後的差排與晶界大幅減少,上升到99%IACS。以選擇性雷射熔融製造的純銅部件與傳統製造純銅的熱處理有顯著的不同,本研究為純銅的積層製造技術應用於工業用途,提供了重要的組織與性質的觀察與解析。
This study investigates the density, grain structure, electrical conductivity, and thermal conductivity of pure copper fabricated by Selective Laser Melting (SLM) and heat treated at different temperatures. The results show that porosity increases as the heat treatment temperature rises from 100°C to 1000°C, with the relative density decreasing from 99.8% in the as-built state to 99.4%. Pores diffuse to the grain boundaries due to recrystallization and the formation of high-angle grain boundaries after heat-treatment at temperatures above 600°C. Heat treatments between 200°C and 400°C are observed to increase thermal and electrical conductivity due to recovery activities in the microstructure. Electrical conductivity was 94% IACS after 200°C heat treatment. Thermal conductivity was 400 W/m·K after 400°C heat treatment which is close to international standards. With even higher heat treatment temperatures, recrystallization caused significant void migration to the grain boundaries, increasing thermal expansion coefficient. Due to the formation of pores at grain boundaries, thermal conductivity are reduced to 373 W/m·K. Electrical conductivity, on the other hand, increases to 99% IACS due to reduced dislocation density and grain boundaries. The heat treatment of pure copper components fabricated by SLM shows significant different properties compared to traditionally manufactured pure copper. This study provides important microstructural and property analyses for industrial applications of the additive manufactured pure copper.
摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 銅及銅合金 4
2.2 選擇性雷射熔融(Selective Laser Melting) 5
2.2.1 SLM和傳統製造比較 7
2.2.2 顯微組織之差異 7
2.2.3 EBSD晶粒取向差異及影響 9
2.2.4 熱處理對機械及物理性質之差異 10
2.3 銅合金熱處理製程 14
2.3.1 退火(Annealing) 14
2.3.2 應力消除退火(Stress Relief Annealing) 17
2.3.3 均質化退火(Homogenization) 18
2.4熱膨脹性質分析 20
第三章 實驗方法 22
3.1 實驗流程 22
3.1.1 純銅原料 24
3.1.2 選擇性雷射熔融(SLM)設備 25
3.1.3 熱處理設備 26
3.2 實驗分析設備 27
3.2.1 精密電子天秤(Density Test) 27
3.2.2 光學顯微鏡(Optical Microscope, OM) 27
3.2.3 冷場發掃描式電子顯微鏡(FE-SEM/EBSD) 27
3.2.4 熱機械分析儀(Thermal Mechanical Analyzer) 28
3.2.5 雷射閃光分析儀(Laser Flash Apparatus, LFA) 28
3.2.6 DC微歐姆電阻表(DC Milli-Ohm Meter) 29
第四章 結果與討論 30
4.1 顯微組織分析 30
4.1.1 光學顯微組織分析 30
4.1.2 As-built及熱處理後之EBSD分析 34
4.1.3 電腦斷層掃描分析(Computed Tomography, CT) 47
4.1.4 缺陷及孔洞觀察 50
4.2 熱膨脹性質分析 54
4.2.1 積層製造材之熱膨脹性質 54
4.2.2 傳統製造材之熱膨脹性質 56
4.3 物理性質分析與組織關係 58
4.3.1 熱傳導 58
4.3.2 導電率 61
第五章 結論 64
參考文獻 65

[1]Y Liu, J. Q. Zhang, Q. Y. Tan, Y. Yin, S. Y. Liu, M. Li, M. Q. Li, Q. Liu, Y. Zhou, T. Wu, F. Wang and M. X. Zhang " Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion," Acta Materialia, vol. 220, 2021, 117311.
[2]S. Yadav, C. P. Paul, A. N. Jinoop, A. K. Rai and K. S. Bindra " Laser Directed Energy Deposition based Additive Manufacturing of Copper: Process Development and Material Characterizations," Journal of Manufacturing Processes, vol. 58, 2020, pp. 984-997.
[3]Y. Aghayar, P. Moazzen, B. Behboodi, A. Shahriari, S. Shakerin, A. Lloyd and M. Mohammadi, " Laser powder bed fusion of pure copper electrodes," Materials & Design, vol. 239, 2024, 112742.
[4]S. D. Jadhav, S. Dadbakhsh, L. Goossens, J. P. Kruth, J.V. Humbeeck and K. Vanmeensel, " Influence of selective laser melting process parameters on texture evolution in pure copper," Journal of Materials Processing Technology, vol. 270, 2019, pp. 47-58.
[5]L. Constantin, Z. P. Wu, N. Li, L. S. Fan, J. F. Silvain and Y. F. Lu, " Laser 3D printing of complex copper structures," Additive Manufacturing, vol. 35, 2020, 101268.
[6]S. D. Jadhav, J. Vleugels, J. P. Kruth, J. V. Humbeeck and K. Vanmeensel, " Mechanical and electrical properties of selective laser-melted parts produced from surface-oxidized copper powder," Material Design & Processing Communications, vol. 2, 2019, e94.
[7]J. R. Davis, " Copper and copper alloys," ASM international, 2001.
[8]D. Tiberto, U. E. Klotz, F. Held and G. Wolf, " Additive manufacturing of copper alloys: influence of process parameters and alloying elements," Materials Science and Technology, vol. 35, 2019, pp. 969-977.
[9]T. Mukherjee, J.W. Elmer, H.L. Wei, T.J. Lienert, W. Zhang, S. Kou and T. DebRoy " Control of grain structure, phases, and defects in additive manufacturing of high-performance metallic components," Progress in Materials Science, vol. 138, 2023, 101153.
[10]Q. Jiang, P. Zhang, Z. Yu, H. Shi, D. Wu, H. Yan, X. Ye, Q. Lu and Y. Tian, " A Review on Additive Manufacturing of Pure Copper," Coatings, vol. 11, 2021, 11060740.
[11]T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang " Additive manufacturing of metallic components – Process, structure and properties," Progress in Materials Science, vol. 92, 2018, pp. 112-224.
[12]S. Qu, J. Ding, J. Fu, M. Fu and X. Song, " Anisotropic material properties of pure copper with fine-grained microstructure fabricated by laser powder bed fusion process," Additive Manufacturing, vol. 59, 2022, 103082.
[13]Z. Ma, K. Zhang, Z. Ren, D. Z. Zhang, G. Tao and H. Xu, " Selective laser melting of Cu–Cr–Zr copper alloy: Parameter optimization, microstructure and mechanical properties," Journal of Alloys and Compounds, vol. 828, 2020, 154350.
[14]W. Lu, W. Zhai, J. Wang, X. Liu, L. Zhou, A. M. M. Ibrahim, X. Li, D.Lin and Y. Morris Wang, " Additive manufacturing of isotropic-grained, high-strength and high-ductility copper alloys," Additive Manufacturing, vol. 38, 2021, 101751.
[15]A. V. Nemani, M. Ghaffari, K. S. Bokati, N. Valizade, E. Afshari and A. Nasiri, " Advancements in Additive Manufacturing for Copper-Based Alloys and Composites: A Comprehensive Review," Journal of Manufacturing and Materials Processing, vol. 8, 2024, 8020054.
[16]S. Zhang, H. Zhu, L. Zhang, W. Zhang, H. Yang and X. Zeng, " Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting," Materials Letters, vol. 237, 2019, pp. 306-309.
[17]S. Zhang, H. Zhu, L. Zhang, W. Zhang, H. Yang and X. Zeng, " Microstructure and properties in QCr0.8 alloy produced by selective laser melting with different heat treatment," Journal of Alloys and Compounds, vol. 800, 2019, pp. 286-293.
[18]S. D. Jadhav, S. Dadbakhsh, R. Chen, R. Shabadi, J. P. Kruth, J. Van Humbeeck and K. Vanmeensel, " Electrical and Mechanical Properties of Selective Laser-Melted CuCr0.3 Alloy Using Carbon Nanoparticles," Advanced Engineering Materials, vol. 22, 2019, 1900946.
[19]S. D. Jadhav, P. P. Dhekne, S. Dadbakhsh, J. P. Kruth, J. Van Humbeeck and K. Vanmeensel, " Surface modified copper alloy powder for reliable laser-based additive manufacturing," Additive Manufacturing, vol. 35, 2020, 101418.
[20]S. D. Jadhav, P. P. Dhekne, E. Brodu, B. Van Hoorewedar, S. Dadbakhsh, J. P. Kruth, J. Van Humbeeck and K. Vanmeensel, " Laser powder bed fusion additive manufacturing of highly conductive parts made of optically absorptive carburized CuCr1 powder," Materials & Design, vol. 198, 2021, 109369.
[21]R. Z. Yu, Z. Y. Zhu, B. Li, Y. Z. Lu, B. Fu, R. G. Guan and X. Lu, " Performance improvement of laser additive manufactured Cu‒Cr alloy via continuous extrusion," Journal of Alloys and Compounds, vol. 879, 2021, 160475.
[22]S. X. Xiu, R. Yang, J. Xue, J. X. Wang and J. Y. Wang, " Microstructure and properties of CuCr contact materials with different Cr content," Transactions of Nonferrous Metals Society of China, vol. 21, 2011, pp. 389-393.
[23]M. Jakub, K. Daniel and P. Robert, " Thermal conductivity of Cu7.2Ni1.8Si1Cr copper alloy produced via SLM and ability of thin-wall structure fabrication," Inproceedings, 2019, pp. 119-129.
[24]M. Afifeh, S. J. Hosseinipour and R. Jamaati, " Manufacturing of pure copper with extraordinary strength-ductility-conductivity balance by cryorolling and annealing," CIRP Journal of Manufacturing Science and Technology, vol. 37, 2022, pp. 623-632.
[25]J. Liu, Y. G. Miao, Z. R. Wang, Y. Y.Zhao, Y.F. Wu and C. W. Li, " Effect of heat treatment on microstructure and properties of additively manufactured aluminum bronze-steel bimetallic structures," Materials Characterization, vol. 207, 2024, 113462.
[26]J. M. Popplewell, R. P. M Procter and J. A. Ford, " On the relation between stress-relief annealing, ordering and stress-corrosion cracking susceptibility in three copper alloys," Corrosion Science, vol. 12, 1972, pp. 193-206.
[27]J. R. Davis, Metals Handbook Desk Edition, 1998, pp. 545-548.
[28]B. F. Brown, " Stress corrosion cracking control plans.3. copper alloys," National Technical Information Service U. S. DEPARTMENT OF COMMERCE, 1975, pp. 1-35.
[29]N. E. Nwankwo, K. C. Nnakwo, A. I Ijomah and I. U. Okeke, "Influence of homogenization heat treatment on grain characteristics and mechanical properties of copper-silicon-zinc and copper- silicon-tin ternary alloys," International Journal of Engineering Research and Reviews, vol. 11, 2023, pp. 64-69.
[30]D. R. Waryoba and P. N. Kalu, " Effect of Homogenization on the Microtexture of Drawn OFHC Copper," Microsc Microanal 11, vol. 2, 2005, pp. 1694-1695.
[31]K. Wang and R. R. Reeber "Thermal Expansion of copper," High Temperature and Materials Science, vol. 35, 1995, pp. 181-186.
[32]J. M. Schliesser and B. F. Woodfield " Development of a Debye heat capacity model for vibrational modes with a gap in the density of states," Journal of Physics: Condensed, vol. 27, 2015, 285402.
[33]S. Tosto " Reappraising 1907 Einstein’s Model of Specific Heat," Journal of Physical Chemistry, vol. 6, 2016, pp. 109-128.
[34]Y. K. Kim, S. H. Park and K. A. Lee " Effect of post-heat treatment on the thermophysical and compressive mechanical properties of Cu-Ni-Sn alloy manufactured by selective laser melting," Materials Characterization, vol. 162, 2020, 110194.
[35]T. Tanabe, C. Eamchotchawalit, C. Busabok, S. Taweethavorn, M. Fujitsuka and T. Shikama " Temperature dependence of thermal conductivity in W and W–Re alloys from 300 to 1000 K," Materials Letters, vol. 57, 2003, pp. 2950-2953.
[36]L. M. Dong, F. Yang, T. B. Yu, N. Zhang, X. F. Zhou, Z. H. Xie and F. Fang " Contribution of grain boundary to strength and electrical conductivity of annealed copper wires," Journal of Materials Research and Technology, vol. 26, 2023, pp. 1459-1468.
[37]S. A. Hosseini and H. D. Manesh " High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process," Materials & Design, vol. 30, 2009, pp. 2911-2918.
[38]C. Silbernagel, L. Gargalis, I. Ashcroft, R. Hague, M. Galea and P. Dickens " Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications," Additive Manufacturing, vol. 29, 2019, 100831.
[39]" Standard Test Method for Resistivity of Electrical Conductor Materials," ASTM B193 - 02, 2014.
[40]Z. J. Li, X. K. Ding, L. Chen, J. C. He, J. F. Chen, J. Chen, N. B. Hua, P. Q. Dai and Q. H. Tang " Effect of Si content and annealing temperatures on microstructure, tensile properties of FeCoCrNiMn high entropy alloys," Journal of Alloys and Compounds, vol. 935, 2023, 168090.
[41]A. Y. Kumar, J. Wang, Y. Bai, S. T. Huxtable and C. B. Williams " Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing," Journal of Physical Chemistry, vol. 182, 2019, 108001.
[42]M. I. Aivazov and I. A. Domashnev " Influence of porosity on the conductivity of hot-pressed titanium-nitride specimens," Powder Metallurgy and Metal Ceramics, vol. 7, 1968, pp. 708-710.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊