跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜柏毅
研究生(外文):TU, PO-YI
論文名稱:利用電化學蝕刻法提升微型發光二極體發光效率
論文名稱(外文):Enhancing the Luminous Efficiency of Micro Light-Emitting Diodes Using Electrochemical Etching
指導教授:蘇昭瑾劉如熹劉如熹引用關係
指導教授(外文):SU, CHAO-CHINLIU, RU-SHI
口試委員:蘇昭瑾劉如熹魏大華方彥翔
口試委員(外文):SU, CHAO-CHINLIU, RU-SHIWEI, DA-HUAFANG, YEN-HSIANG
口試日期:2024-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:106
中文關鍵詞:鈣鈦礦量子點微發光二極體
外文關鍵詞:Perovskite Quantum DotMicro-LED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著穿戴式裝置與元宇宙興起,為因應顯示器需求逐漸上升,使微發光二極體近年受廣泛關注。然微發光二極體目前仍面臨兩大難題,其一為降低晶片尺寸導致發光效率減少,其二為巨量轉移之技術限制,使其目前仍處於開發階段,難以量產。故本研究使用高量子效率之紅色鈣鈦礦量子點作為色轉換層以改善其發光效率,並以電化學蝕刻於氮化鎵表面製作奈米孔洞以提升其藍光之吸收度並減少藍光洩漏,以提升其色轉換效率。
本研究分為兩部分,第一部分為調控電解液與蝕刻時間以於n型氮化鎵之表面產生適合嵌入鈣鈦礦量子點之奈米孔洞,並藉掃描式電子顯微鏡觀測其孔洞形貌。後續嵌入紅色與綠色鈣鈦礦量子點,經量測得知孔洞型結構可有效減少藍光洩漏並提升色轉換效率,且其可達126% NTSC之高色域面積。第二部分藉黑色矩陣將氮化鎵進行像素化,經由電化學蝕刻後嵌入量子點,藉能量散佈光譜儀與共軛焦螢光顯微鏡可證實量子點進入孔洞內,並量測其藍光吸收度與色轉換效率,可觀測其放光強度具顯著提升。故本研究藉電化學蝕刻可改善微發光二極體之特性,增加未來商業應用之可能性。

In recent years, with the rise of wearable devices and the metaverse, there has been a growing demand for displays, leading to widespread attention on micro light-emitting diodes (μ-LEDs). However, μ-LEDs still face two major challenges. First, shrinking chip sizes reduce luminous efficiency, and second, the limitations of mass transfer technology mean they are still in development. Therefore, this study utilizes high quantum efficiency perovskite quantum dots to improve luminous efficiency. Additionally, nanopores are created on the surface of gallium nitride (GaN) to enhance blue light absorption and reduce leakage.
The study is divided into two parts. The first part involves creating nanopores on GaN. Embedding perovskite quantum dots into the pore structure reduces blue light leakage and enhances color conversion efficiency, achieving a high color gamut area of 126% NTSC. In the second part, GaN is pixelated using a black matrix. Energy-dispersive spectroscopy confirms the penetration of quantum dots into the holes, with measurements showing significantly improved color conversion efficiency, resulting in a notable increase in light emission intensity.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 微發光二極體 1
1.1.1 微發光二極體之發展 2
1.1.2 微發光二極體之原理 8
1.1.2.1 微發光二極體之結構 10
1.1.2.2 微發光二極體之驅動技術 11
1.1.3 全彩微發光二極體 12
1.2 鈣鈦礦量子點 16
1.2.1 奈米材料 17
1.2.2 量子尺寸效應與量子侷限效應 18
1.2.3 有機無機式鈣鈦礦量子點 20
1.2.4 全無機式鈣鈦礦量子點 21
1.2.5 鈣鈦礦量子點之放光特性 22
1.2.6 鈣鈦礦量子點之穩定性 24
1.3 量子點於發光二極體之應用 25
1.3.1 色域面積 25
1.3.2 顏色純度 27
1.3.3 電致發光二極體 28
1.3.4 光致發光二極體 29
1.4 孔洞型氮化鎵 30
1.4.1 孔洞型氮化鎵之簡介 30
1.4.2 孔洞型氮化鎵之製作 31
1.4.3 孔洞型氮化鎵之應用 34
1.5 研究目的與動機 39
第二章 實驗步驟與儀器分析原理 41
2.1 化學藥品 41
2.2 實驗步驟 42
2.2.1 孔洞型氮化鎵之蝕刻 42
2.2.2 流動式化學合成鈣鈦礦量子點 43
2.2.3 鈣鈦礦量子點於孔洞氮化鎵之摻入 44
2.3 儀器分析原理 44
2.3.1 掃描式電子顯微鏡(scanning electron microscope; SEM) 44
2.3.2 螢光光譜儀(photoluminescence spectrometer; PL) 46
2.3.3 積分球(integrating sphere) 47
2.3.4 共軛焦螢光顯微鏡(confocal spectral microscope) 49
2.3.5 粉末X光繞射儀(powder X-ray diffraction microscopy; XRD) 50
2.3.6 量子效率儀(photoluminescence quantum yield; PLQY) 52
2.3.7 拉曼光譜儀(Raman spectroscopy; Raman) 52
2.3.8 光學顯微鏡(optical microscope; OM) 54
2.3.9 原子力顯微鏡(atomic force microscope; AFM) 55
2.3.10 X光吸收光譜(X-ray Absorption Spectroscopy; XAS) 57
2.3.11 微流道系統(microfluidic system) 58
第三章 結果與討論 60
3.1 奈米孔洞氮化鎵 60
3.1.1 奈米孔洞氮化鎵之蝕刻時間調控 60
3.1.2 奈米孔洞氮化鎵之蝕刻電解液調控 62
3.1.3 奈米孔洞氮化鎵之吸收度 67
3.1.4 於奈米孔洞氮化鎵之嵌入量子點 69
3.1.5 奈米孔洞氮化鎵複合量子點於發光二極體應用之分析 72
3.2 含黑色矩陣之奈米孔洞氮化鎵 76
3.2.1 含黑色矩陣之奈米孔洞氮化鎵之蝕刻電壓調控 77
3.2.2 含黑色矩陣之奈米孔洞氮化鎵之蝕刻時間調控 79
3.2.3 含黑色矩陣之奈米孔洞氮化鎵之吸收度 82
3.2.4 量子點於含黑色矩陣之奈米孔洞氮化鎵之嵌入 83
3.2.5 含黑色矩陣之奈米孔洞氮化鎵與量子點應用於微發光二極體之分析 88
第四章 結論 92
參考文獻 94


[1] Chen, Z.; Yan, S.; Danesh, C. MicroLED Technologies and Applications: Characteristics, Fabrication, Progress, and Challenges. J. Phys. D: Appl. Phys. 2021, 54, 123001.
[2] Jin, S. X.; Li, J.; Li, J. Z.; Lin, J. Y.; Jiang, H. X. GaN Microdisk Light Emitting Diodes. Appl. Phys. Lett. 2000, 76, 631−633.
[3] Jiang, H. X.; Jin, S. X.; Li, J.; Shakya, J.; Lin, J. Y. III-Nitride Blue Microdisplays. Appl. Phys. Lett. 2001, 78, 1303−1305.
[4] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Lau, K. M. 360 PPI Flip-Chip Mounted Active Matrix Addressable Light Emitting Diode on Silicon (LEDoS) Micro-Displays. J. Disp. Technol. 2013, 9, 678−682.
[5] Han, H. V.; Lin, H. Y.; Lin, C. C.; Chong, W. C.; Li, J. R.; Chen, K. J.; Yu, P.; Chen, T. M.; Chen, H. M.; Lau, K. M.; Kuo, H. C. Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Micro LED Display Technology. Opt. Express 2015, 23, 32504−32515.
[6] Lin, H. Y.; Sher, C. W.; Hsieh, D. H.; Chen, X. Y.; Chen, H. M. P.; Chen, T. M.; Lau, K. M.; Chen, C. H.; Lin, C. C.; Kuo, H. C. Optical Cross-Talk Reduction in a Quantum-Dot-Based Full-Color Micro-Light-Emitting-Diode Display by a Lithographic-Fabricated Photoresist Mold. Photonics Res. 2017, 5, 411−416.
[7] Shin, J.; Kim, H.; Sundaram, S.; Jeong, J.; Park, B. I.; Chang, C. S.; Choi, J.; Kim, T.; Saravanapavanantham, M.; Lu, K. Vertical Full-Colour Micro-LEDs Via 2D Materials-Based Layer Transfer. Nature 2023, 614, 81−87.
[8] Mesrine, M.; Grandjean, N.; Massies, J. Efficiency of NH3 as Nitrogen Source for GaN Molecular Beam Epitaxy. Appl. Phys. Lett. 1998, 72, 350−352.
[9] Zhang, S.; Zheng, H.; Zhou, L.; Li, H.; Chen, Y.; Wei, C.; Wu, T.; Lv, W.; Zhang, G.; Zhang, S.; Gong, Z.; Jia, B.; Lin, H.; Gao, Z.; Xu, W.; Ning, H. Research Progress of Micro-LED Display Technology. Cryst. 2023, 13, 1001.
[10] Menard, E.; Lee, K. J.; Khang, D. Y.; Nuzzo, R. G.; Rogers, J. A. A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates. Appl. Phys. Lett. 2004, 84, 5398−5400.
[11] Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp. Nat. Mater 2006, 5, 33−38.
[12] Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206.
[13] Zhou, X.; Tian, P.; Sher, C. W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H. C. Growth, Transfer Printing and Colour Conversion Techniques Towards Full-Colour Micro-LED Display. Prog. Quantum Electron. 2020, 71, 100263.
[14] Horng, R. H.; Chien, H. Y.; Tarntair, F. G.; Wuu, D. S. Fabrication and Study on Red Light Micro-LED Displays. IEEE J. Electron Devices Soc. 2018, 6, 1064−1069.
[15] Huang, Y. M.; Chen, J. H.; Liou, Y. H.; James Singh, K.; Tsai, W. C.; Han, J.; Lin, C. J.; Kao, T. S.; Lin, C. C.; Chen, S. C. High-Uniform and High-Efficient Color Conversion Nanoporous GaN-Based Micro-LED Display with Embedded Quantum Dots. Nanomater. 2021, 11, 2696.
[16] Liu, Z. J.; Wong, K. M.; Keung, C. W.; Tang, C. W.; Lau, K. M. Monolithic LED Microdisplay on Active Matrix Substrate Using Flip-Chip Technology. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1298−1302.
[17] Shin, W. S.; Ahn, H. A.; Na, J. S.; Hong, S. K.; Kwon, O. K.; Lee, J. H.; Um, J. G.; Jang, J.; Kim, S. H.; Lee, J. S. A Driving Method of Pixel Circuit Using a-IGZO TFT for Suppression of Threshold Voltage Shift in AMLED Displays. IEEE Electron Device Lett. 2017, 38, 760−762.
[18] Liou, J. C.; Yang, C. F. Design and Fabrication of Micro-LED Array with Application-Specific Integrated Circuits (ASICs) Light Emitting Display. Microsyst. Technol. 2018, 24, 4089−4099.
[19] Hwang, D.; Mughal, A.; Pynn, C. D.; Nakamura, S.; DenBaars, S. P. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs. Appl. Phys. Express 2017, 10, 032101.
[20] Mun, S. H.; Kang, C. M.; Min, J. H.; Choi, S. Y.; Jeong, W. L.; Kim, G. G.; Lee, J. S.; Kim, K. P.; Ko, H. C.; Lee, D. S. Highly Efficient Full‐Color Inorganic LEDs on a Single Wafer by Using Multiple Adhesive Bonding. Adv. Mater. Interfaces 2021, 8, 2100300.
[21] Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-Dimensional Multicolor (RGBY) Integrated Nanocolumn Micro-LEDs as a Fundamental Technology of Micro-LED Display. Appl. Phys. Express 2020, 13, 014003.
[22] Guo, W.; Zhang, M.; Banerjee, A.; Bhattacharya, P. Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy. Nano Lett. 2010, 10, 3355−3359.
[23] Sekiguchi, H.; Kishino, K.; Kikuchi, A. Emission Color Control from Blue to Red with Nanocolumn Diameter of InGaN/GaN Nanocolumn Arrays Grown on Same Substrate. Appl. Phys. Lett. 2010, 96.
[24] Hong, Y. J.; Lee, C. H.; Yoon, A.; Kim, M.; Seong, H. K.; Chung, H. J.; Sone, C.; Park, Y. J.; Yi, G. C. Visible‐Color‐Tunable Light‐Emitting Diodes. Adv. Mater. 2011, 29, 3284−3288.
[25] Yang, X.; Lin, Y.; Wu, T.; Yan, Z.; Chen, Z.; Kuo, H. C.; Zhang, R. An Overview on the Principle of Inkjet Printing Technique and Its Application in Micro-Display for Augmented/Virtual Realities. Opto-Electron. Adv. 2022, 5, 210123-210121−210123-210124.
[26] Han, J. K.; Choi, J. I.; Piquette, A.; Hannah, M.; Anc, M.; Galvez, M.; Talbot, J. B.; McKittrick, J. Phosphor Development and Integration for near-UV LED Solid State Lighting. ECS J. Solid State Sci. Technol. 2012, 2, R3138.
[27] Chen, G. S.; Wei, B. Y.; Lee, C. T.; Lee, H. Y. Monolithic Red/Green/Blue Micro-LEDs with HBR and DBR Structures. IEEE Photonics Technol. Lett. 2017, 30, 262−265.
[28] Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites. Adv. Mater. 2000, 12, 1102−1105.
[29] Wu, X. G.; Ji, H. L.; Yan, X. L.; Zhong, H. Z. Industry Outlook of Perovskite Quantum Dots for Display Applications. Nat. Nanotechnol 2022, 17, 813−816.
[30] Forrester, W. F.; Hinde, R. M. Crystal Structure of Barium Titanate. Nature 1945, 156, 177.
[31] Zhou, Y.; Zhao, Y. Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 12, 1495−1511.
[32] Kubo, R. Electronic Properties of Metallic Fine Particles. I. JPSJ 1962, 17, 975−986.
[33] Lippens, P. E.; Lannoo, M. Calculation of the Band Gap for Small CdS and ZnS Crystallites. Phys. Rev. B 1989, 39, 10935.
[34] Rabouw, F. T.; De Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top. Curr. Chem 2016, 374, 58−87.
[35] Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850−853.
[36] Liang, X.; Baker, R. W.; Wu, K.; Deng, W.; Ferdani, D.; Kubiak, P. S.; Marken, F.; Torrente-Murciano, L.; Cameron, P. J. Continuous Low Temperature Synthesis of MAPbX3 Perovskite Nanocrystals in a Flow Reactor. React. Chem. Eng. 2018, 3, 640−644.
[37] Møller, C. K. Crystal Structure and Photoconductivity of Caesium Plumbohalides. Nature 1958, 182, 1436−1436.
[38] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X= Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692−3696.
[39] Abdulkareem, N.; Sami, S. Structure, Bandgap and Optical Properties of Cubic CsPbX3 (X= Cl, Br and I) under Hydrostatic Pressure. Ukr. J. Phys. Opt. 2019, 132−141.
[40] Wu, X. G.; Ji, H.; Yan, X.; Zhong, H. Industry Outlook of Perovskite Quantum Dots for Display Applications. Nat. Nanotechnol 2022, 17, 813−816.
[41] Xue, J.; Wang, X.; Jeong, J. H.; Yan, X. Fabrication, Photoluminescence and Applications of Quantum Dots Embedded Glass Ceramics. J. Chem. Eng. 2020, 383, 123082.
[42] Kim, H.; Bae, S. R.; Lee, T. H.; Lee, H.; Kang, H.; Park, S.; Jang, H. W.; Kim, S. Y. Enhanced Optical Properties and Stability of CsPbBr3 Nanocrystals through Nickel Doping. Adv. Funct. Mater. 2021, 31, 2102770.
[43] Zeng, Q.; Zhang, X.; Bing, Q.; Xiong, Y.; Yang, F.; Liu, H.; Liu, J. Y.; Zhang, H.; Zheng, W.; Rogach, A. L. Surface Stabilization of Colloidal Perovskite Nanocrystals Via Multi-Amine Chelating Ligands. ACS Energy Lett. 2022, 7, 1963−1970.
[44] Sun, C.; Zhang, Y.; Ruan, C.; Yin, C.; Wang, X.; Wang, Y.; Yu, W. W. Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots. Adv. Mater. 2016, 28, 10088−10094.
[45] Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater 2015, 14, 454−458.
[46] Yang, J.; Choi, M. K.; Yang, U. J.; Kim, S. Y.; Kim, Y. S.; Kim, J. H.; Kim, D. H.; Hyeon, T. Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Lett. 2020, 21, 26−33.
[47] Nakamura, S.; Mukai, T.; Senoh, M. Candela‐Class High‐Brightness InGaN/AlGaN Double‐Heterostructure Blue‐Light‐Emitting Diodes. Appl. Phys. Lett. 1994, 64, 1687−1689.
[48] Jang, L. W.; Jeon, D. W.; Polyakov, A. Y.; Govorkov, A. V.; Sokolov, V. N.; Smirnov, N. B.; Cho, H. S.; Yun, J. H.; Shcherbatchev, K. D.; Baek, J. H. Electrical and Structural Properties of GaN Films and GaN/InGaN Light-Emitting Diodes Grown on Porous GaN Templates Fabricated by Combined Electrochemical and Photoelectrochemical Etching. J. Alloys Compd. 2014, 589, 507−512.
[49] Dı́az, D. J.; Williamson, T. L.; Adesida, I.; Bohn, P. W.; Molnar, R. J. Morphology and Luminescence of Porous GaN Generated Via Pt-Assisted Electroless Etching. J. Vac. Sci. Technol. 2002, 20, 2375−2383.
[50] Cheah, S.; Lee, S.; Ng, S.; Yam, F.; Hassan, H. A.; Hassan, Z. Luminescence Evolution of Porous GaN Thin Films Prepared Via UV-Assisted Electrochemical Etching. J. Lumin. 2015, 159, 303−311.
[51] Soh, C. B.; Tay, C. B.; Tan, R. J. N.; Vajpeyi, A. P.; Seetoh, I. P.; Ansah-Antwi, K. K.; Chua, S. J. Nanopore Morphology in Porous GaN Template and Its Effect on the LEDs Emission. J. Phys. D: Appl. Phys. 2013, 46, 365102.
[52] Romano, L. T.; Van de Walle, C. G.; Ager III, J. W.; Götz, W.; Kern, R. S. Effect of Si Doping on Strain, Cracking, and Microstructure in GaN Thin Films Grown by Metalorganic Chemical Vapor Deposition. J. Appl. Phys. 2000, 87, 7745−7752.
[53] Massabuau, F. C. P.; Griffin, P. H.; Springbett, H. P.; Liu, Y.; Kumar, R. V.; Zhu, T.; Oliver, R. A. Dislocations as Channels for the Fabrication of Sub-Surface Porous GaN by Electrochemical Etching. APL Mater. 2020, 8.
[54] Zhao, D. G.; Xu, S. J.; Xie, M. H.; Tong, S. Y.; Yang, H. Stress and Its Effect on Optical Properties of GaN Epilayers Grown on Si (111), 6H-SiC (0001), and C-Plane Sapphire. Appl. Phys. Lett. 2003, 83, 677−679.
[55] Waseem, A.; Jeong, D. K.; Johar, M. A.; Kang, J. H.; Ha, J. S.; Lee, J. K.; Ryu, S. W. Enhanced Piezoelectric Output of NiO/Nanoporous GaN by Suppression of Internal Carrier Screening. Semicond. Sci. Technol. 2018, 33, 065007.
[56] Lee, S. M.; Gong, S. H.; Kang, J. H.; Ebaid, M.; Ryu, S. W.; Cho, Y. H. Optically Pumped GaN Vertical Cavity Surface Emitting Laser with High Index-Contrast Nanoporous Distributed Bragg Reflector. Opt. Express 2015, 23, 11023−11030.
[57] Ryu, J. H.; Katharria, Y. S.; Kim, H. Y.; Kim, H. K.; Ko, K. B.; Han, N.; Kang, J. H.; Park, Y. J.; Suh, E. K.; Hong, C. H. Stress-Relaxed Growth of N-GaN Epilayers. Appl. Phys. Lett. 2012, 100.
[58] Miranda La Hera, V.; Mena, J.; Canto-Aguilar, E. J.; Reza Barzegar, H.; Carvajal, J. J.; Wågberg, T.; Gracia-Espino, E. Electronic Properties of Hexagonal V-Shaped Gallium Nitride Pits. J. Phys. Chem. C 2023, 127, 24658−24665.
[59] Son, H.; Uthirakumar, P.; Polyakov, A. Y.; Park, J. H.; Lee, K. H.; Lee, I. H. Impact of Porosity on the Structural and Optoelectronic Properties of Nanoporous GaN Double Layer Fabricated Via Combined Electrochemical and Photoelectrochemical Etching. Appl. Surf. Sci. 2022, 592, 153248.
[60] Tautz, M.; Díaz Díaz, D. Wet‐Chemical Etching of GaN: Underlying Mechanism of a Key Step in Blue and White LED Production. ChemistrySelect 2018, 3, 1480−1494.
[61] Sato, T.; Kumazaki, Y.; Kida, H.; Watanabe, A.; Yatabe, Z.; Matsuda, S. Large Photocurrents in GaN Porous Structures with a Redshift of the Photoabsorption Edge. Semicond. Sci. Technol. 2015, 31, 014012.
[62] Cheah, S. F.; Lee, S. C.; Ng, S. S.; Yam, F. K.; Abu Hassan, H.; Hassan, Z. Surface Phonon Polariton Characteristic of Honeycomb Nanoporous GaN Thin Films. Appl. Phys. Lett. 2013, 102.
[63] Haberer, E. D.; Chen, C. H.; Abare, A.; Hansen, M.; Denbaars, S.; Coldren, L.; Mishra, U.; Hu, E. L. Channeling as a Mechanism for Dry Etch Damage in GaN. Appl. Phys. Lett. 2000, 76, 3941−3943.
[64] Zhuang, D.; Edgar, J. H. Wet Etching of GaN, AlN, and SiC: A Review. Mater. Sci. Eng.: R: Rep. 2005, 48, 1−46.
[65] Zhang, C.; Park, S. H.; Chen, D.; Lin, D. W.; Xiong, W.; Kuo, H. C.; Lin, C. F.; Cao, H.; Han, J. Mesoporous GaN for Photonic Engineering Highly Reflective GaN Mirrors as an Example. ACS Photonics 2015, 2, 980−986.
[66] Chen, D.; Xiao, H.; Han, J. Nanopores in GaN by Electrochemical Anodization in Hydrofluoric Acid: Formation and Mechanism. J. Appl. Phys. 2012, 112.
[67] Al-Heuseen, K.; Hashim, M. R.; Ali, N. K. Enhanced Optical Properties of Porous GaN by Using UV-Assisted Electrochemical Etching. Phys. B: Condens. Matter 2010, 405, 3176−3179.
[68] Zhang, M. R.; Qin, S. J.; Peng, H. D.; Pan, G. B. Porous GaN Photoelectrode Fabricated by Photo-Assisted Electrochemical Etching Using Ionic Liquid as Etchant. Mater. Lett. 2016, 182, 363−366.
[69] Mohd Razali, N. S.; Abd Rahim, A. F.; Radzali, R.; Mahmood, A.; Bahrol Anuar, M. F. Morphological, Structural and Optical Characteristics of Porous GaN Fabricated by UV-Assisted Electrochemical Etching. Solid State Phenom. 2020, 301, 3−11.
[70] Shushanian, A.; Iida, D.; Zhuang, Z.; Han, Y.; Ohkawa, K. Analysis of the N-GaN Electrochemical Etching Process and Its Mechanism in Oxalic Acid. RSC Adv. 2022, 12, 4648−4655.
[71] Weyher, J. L.; Van Dorp, D. H.; Conard, T.; Nowak, G.; Levchenko, I.; Kelly, J. J. Chemical Etching of GaN in KOH Solution: Role of Surface Polarity and Prior Photoetching. J. Phys. Chem. C 2022, 126, 1115−1124.
[72] Alias, E. A.; Samsudin, M. E. A.; DenBaars, S.; Speck, J.; Nakamura, S.; Zainal, N. N-Face GaN Substrate Roughening for Improved Performance GaN-on-GaN LED. Microelectron. Int. 2021, 38, 93−98.
[73] Pasayat, S. S.; Wu, F.; Gupta, C.; DenBaars, S. P.; Nakamura, S.; Keller, S.; Mishra, U. K. Study of Pore Geometry and Dislocations in Porous GaN Based Pseudo-Substrates Using TEM. IEEE J. Quantum Electron. 2022, 58, 1−7.
[74] Fiuczek, N.; Sawicka, M.; Feduniewicz-Żmuda, A.; Siekacz, M.; Żak, M.; Nowakowski-Szkudlarek, K.; Muzioł, G.; Wolny, P.; Kelly, J. J.; Skierbiszewski, C. Electrochemical Etching of P-Type GaN Using a Tunnel Junction for Efficient Hole Injection. Acta Mater. 2022, 234, 118018.
[75] Shiu, G. Y.; Wang, C. J.; Ke, Y.; Chen, K. T.; Kao, Y. C.; Chen, H.; Lin, Y. S.; Lin, C. F. Nanoporous Nitrogen-Ion-Implanted InGaN Resonant-Cavity Light-Emitting Diodes for Vertical-Cavity Surface-Emitting Lasers. ACS Appl. Nano Mater. 2024, 7, 8074–8080.
[76] Zhu, T.; Liu, Y.; Ding, T.; Fu, W. Y.; Jarman, J.; Ren, C. X.; Kumar, R. V.; Oliver, R. A. Wafer-Scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors Via Electrochemical Porosification. Sci. Rep. 2017, 7, 1−8.
[77] Sarkar, M.; Adams, F.; Dar, S. A.; Penn, J.; Ji, Y.; Gundimeda, A.; Zhu, T.; Liu, C.; Hirshy, H.; Massabuau, F. C.-P. Sub-Surface Imaging of Porous GaN Distributed Bragg Reflectors Via Backscattered Electrons. Microsc. Microanal. 2024, ozae028.
[78] Zhao, C.; Yang, X.; Shen, L.; Luan, C.; Liu, J.; Ma, J.; Xiao, H. Fabrication and Properties of Wafer-Scale Nanoporous GaN Distributed Bragg Reflectors with Strong Phase-Separated InGaN/GaN Layers. J. Alloys Compd. 2019, 789, 658−663.
[79] Han, J.; Elafandy, R.; Kang, J. H. Development of Blue Vertical Cavity Surface Emitting Lasers (VCSELs) with Nanoporous GaN. ECS Trans. 2021, 102, 17.
[80] Benton, J.; Bai, J.; Wang, T. Utilisation of GaN and InGaN/GaN with Nanoporous Structures for Water Splitting. Appl. Phys. Lett. 2014, 105.
[81] Heffernan, C.; Lynch, R.; Buckley, D. N. A Study of the Photoelectrochemical Etching of N-GaN in H3PO4 and KOH Electrolytes. ECS J. Solid State Sci. Technol. 2019, 9, 015003.
[82] Dryden, D. M.; Nikolic, R. J.; Islam, M. S. Photogalvanic Etching of N-GaN for Three-Dimensional Electronics. J. Electron. Mater. 2019, 48, 3345−3350.
[83] Mohd Razali, N. S.; Abd Rahim, A. F.; Radzali, R.; Mahmood, A. Investigation on the Effect of Current Density on Porous GaN Fabricated by UV-Assisted Electrochemical Etching. J. Electrical Electron. Eng. Res. 2021, 18, 84−88.
[84] Kang, J. H.; Li, B.; Zhao, T.; Johar, M. A.; Lin, C. C.; Fang, Y. H.; Kuo, W. H.; Liang, K. L.; Hu, S.; Ryu, S. W. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots. ACS Appl. Mater. Interfaces. 2020, 12, 30890−30895.
[85] Zhuang, Z.; Guo, X.; Liu, B.; Hu, F.; Li, Y.; Tao, T.; Dai, J.; Zhi, T.; Xie, Z.; Chen, P. High Color Rendering Index Hybrid III‐Nitride/Nanocrystals White Light‐Emitting Diodes. Adv. Funct. Mater. 2016, 26, 36−43.
[86] Sahoo, H. Förster Resonance Energy Transfer–a Spectroscopic Nanoruler: Principle and Applications. JPPC 2011, 12, 20−30.
[87] Chen, C. H.; Kuo, S. Y.; Feng, H. Y.; Li, Z. H.; Yang, S.; Wu, S. H.; Hsieh, H. Y.; Lin, Y. S.; Lee, Y. C.; Chen, W. C. Photon Color Conversion Enhancement of Colloidal Quantum Dots Inserted into a Subsurface Laterally-Extended GaN Nano-Porous Structure in an InGaN/GaN Quantum-Well Template. Opt. Express 2023, 31, 6327−6341.
[88] Krishnan, C.; Brossard, M.; Lee, K. Y.; Huang, J. K.; Lin, C. H.; Kuo, H. C.; Charlton, M. D. B.; Lagoudakis, P. Hybrid Photonic Crystal Light-Emitting Diode Renders 123% Color Conversion Effective Quantum Yield. Optica 2016, 3, 503−509.
[89] Miller, R. A.; So, H.; Chiamori, H. C.; Suria, A. J.; Chapin, C. A.; Senesky, D. G. A Microfabricated Sun Sensor Using GaN-on-Sapphire Ultraviolet Photodetector Arrays. Rev. Sci. Instrum. 2016, 87.
[90] Lee, J. H.; Lee, W. W.; Yang, D. W.; Chang, W. J.; Kwon, S. S.; Park, W. I. Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces. 2018, 10, 14170−14174.
[91] Kalita, G.; Kobayashi, M.; Shaarin, M. D.; Mahyavanshi, R. D.; Tanemura, M. Schottky Barrier Diode Characteristics of Graphene‐GaN Heterojunction with Hexagonal Boron Nitride Interfacial Layer. Phys. Status Solidi A 2018, 215, 1800089.
[92] Zhuo, R.; Wang, Y.; Wu, D.; Lou, Z.; Shi, Z.; Xu, T.; Xu, J.; Tian, Y.; Li, X. High-Performance Self-Powered Deep Ultraviolet Photodetector Based on MoS2/GaN P–N Heterojunction. J. Mater. Chem. C 2018, 6, 299−303.
[93] Raju, P.; Li, Q. Semiconductor Materials and Devices for Gas Sensors. J. Electrochem. Soc. 2022, 169, 057518.
[94] Zhai, X.; Zhang, Y.; Zhang, Y.; Zhang, M.; Tang, J. Facile Fabrication of 3D Honeycomb-Like Porous GaN Photoanode for Reliable and Sensitive Photoelectrochemical Detection of Glucose. J. Alloys Compd. 2023, 939, 168784.
[95] Abud, S. H.; Hassan, Z.; Yam, F. K. Fabrication and Characterization of Metal–Semiconductor–Metal Photodetector Based on Porous InGaN. Mater. Chem. Phys. 2014, 144, 86−91.
[96] Shafa, M.; Aravindh, S. A.; Hedhili, M. N.; Mahmoud, S. T.; Pan, Y.; Ng, T. K.; Ooi, B. S.; Najar, A. Improved H2 Detection Performance of GaN Sensor with Pt/Sulfide Treatment of Porous Active Layer Prepared by Metal Electroless Etching. Int. J. Hydrog. Energy 2021, 46, 4614−4625.
[97] Zhou, J.; Huang, H.; Chen, S.; Wang, M.; Zhao, D.; Yu, J.; Jin, S.; Zhong, Y.; Chen, X.; Yu, X. A High Sensitive Chemiresistive-Biosensor Based on Self-Assembly Grown GaN Porous Layer. Sens. Actuators B: Chem. 2021, 345, 130360.
[98] Li, J.; Xi, X.; Li, X.; Lin, S.; Ma, Z.; Xiu, H.; Zhao, L. Ultra‐High and Fast Ultraviolet Response Photodetectors Based on Lateral Porous GaN/Ag Nanowires Composite Nanostructure. Adv. Opt. Mater. 2020, 8, 1902162.
[99] Barnes, E. O.; Chen, X.; Li, P.; Compton, R. G. Voltammetry at Porous Electrodes: A Theoretical Study. J. Electroanal. Chem. 2014, 720, 92−100.
[100] Zhang, M. R.; Pan, G. B. Porous GaN Electrode for Anodic Stripping Voltammetry of Silver (I). Talanta 2017, 165, 540−544.
[101] Journot, T.; Bouchiat, V.; Gayral, B.; Dijon, J.; Hyot, B. Self-Assembled UV Photodetector Made by Direct Epitaxial GaN Growth on Graphene. ACS Appl. Mater. Interfaces. 2018, 10, 18857−18862.
[102] Yu, R.; Wang, G.; Shao, Y.; Wu, Y.; Wang, S.; Lian, G.; Zhang, B.; Hu, H.; Liu, L.; Zhang, L. From Bulk to Porous GaN Crystal: Precise Structural Control and Its Application in Ultraviolet Photodetectors. J. Mater. Chem. C 2019, 7, 14116−14122.
[103] Lin, Y.; Deng, P.; Nie, Y.; Hu, Y.; Xing, L.; Zhang, Y.; Xue, X. Room-Temperature Self-Powered Ethanol Sensing of a Pd/ZnO Nanoarray Nanogenerator Driven by Human Finger Movement. Nanoscale 2014, 6, 4604−4610.
[104] Liu, Z.; Du, L.; Zhang, S. H.; Bian, A.; Fang, J. P.; Xing, C. Y.; Li, S.; Tang, J. C.; Guo, Y. F.; Tang, W. H. Achieving Highly-Efficient H2S Gas Sensor by Flower-Like SnO2–SnO/Porous GaN Heterojunction. Chin. Phys. B 2023, 32, 020701.
[105] Bergmann, M. A.; Enslin, J.; Yapparov, R.; Hjort, F.; Wickman, B.; Marcinkevičius, S.; Wernicke, T.; Kneissl, M.; Haglund, Å. Electrochemical Etching of AlGaN for the Realization of Thin-Film Devices. Appl. Phys. Lett. 2019, 115.
[106] Soh, C.; Tay, C.; Tan, R. J.; Vajpeyi, A.; Seetoh, I.; Ansah-Antwi, K.; Chua, S. Nanopore Morphology in Porous GaN Template and Its Effect on the LEDs Emission. J. Phys. D: Appl. Phys. 2013, 46, 365102.
[107] Guo, Y.; Song, W.; Liu, Q.; Sun, Y.; Chen, Z.; He, X.; Zeng, Q.; Luo, X.; Zhang, R.; Li, S. A Porous GaN/MoO3 Heterojunction for Filter-Free, Ultra-Narrowband Ultraviolet Photodetection. J. Mater. Chem. C 2022, 10, 5116−5123.
[108] Li, Q.; Liu, G.; Yu, J.; Wang, G.; Wang, S.; Cheng, T.; Chen, C.; Liu, L.; Yang, J. Y.; Xu, X. A Perovskite/Porous GaN Crystal Hybrid Structure for Ultrahigh Sensitivity Ultraviolet Photodetectors. J. Mater. Chem. C 2022, 10, 8321−8328.
[109] Munir, N.; Hanif, M.; Dias, D. A.; Abideen, Z. The Role of Halophytic Nanoparticles Towards the Remediation of Degraded and Saline Agricultural Lands. ESPR 2021, 28, 60383−60405.
[110] Jonkman, J.; Brown, C. M.; Wright, G. D.; Anderson, K. I.; North, A. J. Tutorial: Guidance for Quantitative Confocal Microscopy. Nat. Protoc 2020, 15, 1585−1611.
[111] Pletikapić, G.; Ivošević DeNardis, N. Application of Surface Analytical Methods for Hazardous Situation in the Adriatic Sea: Monitoring of Organic Matter Dynamics and Oil Pollution. NHESS 2017, 17, 31−44.
[112] De Groot, F. High-Resolution X-Ray Emission and X-Ray Absorption Spectroscopy. Chem. Rev. 2001, 101, 1779−1808.
[113] Huang, W. T.; Hong, L. X.; Liu, R. S. Nanostructure Control of GaN by Electrochemical Etching for Enhanced Perovskite Quantum Dot LED Backlighting. ACS Appl. Mater. Interfaces. 2023, 15, 39505−39512.
[114] Liu, J.; Cui, J.; Xiao, H. Electrochemical Etching of N-Type GaN in Different Electrolytes. J. Alloys Compd. 2024, 173846.
[115] Harima, H. Properties of GaN and Related Compounds Studied by Means of Raman Scattering. J. Condens. Matter Phys. 2002, 14, R967.
電子全文 電子全文(網際網路公開日期:20270731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top