|
[1] Chen, Z.; Yan, S.; Danesh, C. MicroLED Technologies and Applications: Characteristics, Fabrication, Progress, and Challenges. J. Phys. D: Appl. Phys. 2021, 54, 123001. [2] Jin, S. X.; Li, J.; Li, J. Z.; Lin, J. Y.; Jiang, H. X. GaN Microdisk Light Emitting Diodes. Appl. Phys. Lett. 2000, 76, 631−633. [3] Jiang, H. X.; Jin, S. X.; Li, J.; Shakya, J.; Lin, J. Y. III-Nitride Blue Microdisplays. Appl. Phys. Lett. 2001, 78, 1303−1305. [4] Liu, Z. J.; Chong, W. C.; Wong, K. M.; Lau, K. M. 360 PPI Flip-Chip Mounted Active Matrix Addressable Light Emitting Diode on Silicon (LEDoS) Micro-Displays. J. Disp. Technol. 2013, 9, 678−682. [5] Han, H. V.; Lin, H. Y.; Lin, C. C.; Chong, W. C.; Li, J. R.; Chen, K. J.; Yu, P.; Chen, T. M.; Chen, H. M.; Lau, K. M.; Kuo, H. C. Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Micro LED Display Technology. Opt. Express 2015, 23, 32504−32515. [6] Lin, H. Y.; Sher, C. W.; Hsieh, D. H.; Chen, X. Y.; Chen, H. M. P.; Chen, T. M.; Lau, K. M.; Chen, C. H.; Lin, C. C.; Kuo, H. C. Optical Cross-Talk Reduction in a Quantum-Dot-Based Full-Color Micro-Light-Emitting-Diode Display by a Lithographic-Fabricated Photoresist Mold. Photonics Res. 2017, 5, 411−416. [7] Shin, J.; Kim, H.; Sundaram, S.; Jeong, J.; Park, B. I.; Chang, C. S.; Choi, J.; Kim, T.; Saravanapavanantham, M.; Lu, K. Vertical Full-Colour Micro-LEDs Via 2D Materials-Based Layer Transfer. Nature 2023, 614, 81−87. [8] Mesrine, M.; Grandjean, N.; Massies, J. Efficiency of NH3 as Nitrogen Source for GaN Molecular Beam Epitaxy. Appl. Phys. Lett. 1998, 72, 350−352. [9] Zhang, S.; Zheng, H.; Zhou, L.; Li, H.; Chen, Y.; Wei, C.; Wu, T.; Lv, W.; Zhang, G.; Zhang, S.; Gong, Z.; Jia, B.; Lin, H.; Gao, Z.; Xu, W.; Ning, H. Research Progress of Micro-LED Display Technology. Cryst. 2023, 13, 1001. [10] Menard, E.; Lee, K. J.; Khang, D. Y.; Nuzzo, R. G.; Rogers, J. A. A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates. Appl. Phys. Lett. 2004, 84, 5398−5400. [11] Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp. Nat. Mater 2006, 5, 33−38. [12] Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206. [13] Zhou, X.; Tian, P.; Sher, C. W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H. C. Growth, Transfer Printing and Colour Conversion Techniques Towards Full-Colour Micro-LED Display. Prog. Quantum Electron. 2020, 71, 100263. [14] Horng, R. H.; Chien, H. Y.; Tarntair, F. G.; Wuu, D. S. Fabrication and Study on Red Light Micro-LED Displays. IEEE J. Electron Devices Soc. 2018, 6, 1064−1069. [15] Huang, Y. M.; Chen, J. H.; Liou, Y. H.; James Singh, K.; Tsai, W. C.; Han, J.; Lin, C. J.; Kao, T. S.; Lin, C. C.; Chen, S. C. High-Uniform and High-Efficient Color Conversion Nanoporous GaN-Based Micro-LED Display with Embedded Quantum Dots. Nanomater. 2021, 11, 2696. [16] Liu, Z. J.; Wong, K. M.; Keung, C. W.; Tang, C. W.; Lau, K. M. Monolithic LED Microdisplay on Active Matrix Substrate Using Flip-Chip Technology. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1298−1302. [17] Shin, W. S.; Ahn, H. A.; Na, J. S.; Hong, S. K.; Kwon, O. K.; Lee, J. H.; Um, J. G.; Jang, J.; Kim, S. H.; Lee, J. S. A Driving Method of Pixel Circuit Using a-IGZO TFT for Suppression of Threshold Voltage Shift in AMLED Displays. IEEE Electron Device Lett. 2017, 38, 760−762. [18] Liou, J. C.; Yang, C. F. Design and Fabrication of Micro-LED Array with Application-Specific Integrated Circuits (ASICs) Light Emitting Display. Microsyst. Technol. 2018, 24, 4089−4099. [19] Hwang, D.; Mughal, A.; Pynn, C. D.; Nakamura, S.; DenBaars, S. P. Sustained High External Quantum Efficiency in Ultrasmall Blue III–Nitride Micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [20] Mun, S. H.; Kang, C. M.; Min, J. H.; Choi, S. Y.; Jeong, W. L.; Kim, G. G.; Lee, J. S.; Kim, K. P.; Ko, H. C.; Lee, D. S. Highly Efficient Full‐Color Inorganic LEDs on a Single Wafer by Using Multiple Adhesive Bonding. Adv. Mater. Interfaces 2021, 8, 2100300. [21] Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-Dimensional Multicolor (RGBY) Integrated Nanocolumn Micro-LEDs as a Fundamental Technology of Micro-LED Display. Appl. Phys. Express 2020, 13, 014003. [22] Guo, W.; Zhang, M.; Banerjee, A.; Bhattacharya, P. Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy. Nano Lett. 2010, 10, 3355−3359. [23] Sekiguchi, H.; Kishino, K.; Kikuchi, A. Emission Color Control from Blue to Red with Nanocolumn Diameter of InGaN/GaN Nanocolumn Arrays Grown on Same Substrate. Appl. Phys. Lett. 2010, 96. [24] Hong, Y. J.; Lee, C. H.; Yoon, A.; Kim, M.; Seong, H. K.; Chung, H. J.; Sone, C.; Park, Y. J.; Yi, G. C. Visible‐Color‐Tunable Light‐Emitting Diodes. Adv. Mater. 2011, 29, 3284−3288. [25] Yang, X.; Lin, Y.; Wu, T.; Yan, Z.; Chen, Z.; Kuo, H. C.; Zhang, R. An Overview on the Principle of Inkjet Printing Technique and Its Application in Micro-Display for Augmented/Virtual Realities. Opto-Electron. Adv. 2022, 5, 210123-210121−210123-210124. [26] Han, J. K.; Choi, J. I.; Piquette, A.; Hannah, M.; Anc, M.; Galvez, M.; Talbot, J. B.; McKittrick, J. Phosphor Development and Integration for near-UV LED Solid State Lighting. ECS J. Solid State Sci. Technol. 2012, 2, R3138. [27] Chen, G. S.; Wei, B. Y.; Lee, C. T.; Lee, H. Y. Monolithic Red/Green/Blue Micro-LEDs with HBR and DBR Structures. IEEE Photonics Technol. Lett. 2017, 30, 262−265. [28] Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer Composites. Adv. Mater. 2000, 12, 1102−1105. [29] Wu, X. G.; Ji, H. L.; Yan, X. L.; Zhong, H. Z. Industry Outlook of Perovskite Quantum Dots for Display Applications. Nat. Nanotechnol 2022, 17, 813−816. [30] Forrester, W. F.; Hinde, R. M. Crystal Structure of Barium Titanate. Nature 1945, 156, 177. [31] Zhou, Y.; Zhao, Y. Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 12, 1495−1511. [32] Kubo, R. Electronic Properties of Metallic Fine Particles. I. JPSJ 1962, 17, 975−986. [33] Lippens, P. E.; Lannoo, M. Calculation of the Band Gap for Small CdS and ZnS Crystallites. Phys. Rev. B 1989, 39, 10935. [34] Rabouw, F. T.; De Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Top. Curr. Chem 2016, 374, 58−87. [35] Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850−853. [36] Liang, X.; Baker, R. W.; Wu, K.; Deng, W.; Ferdani, D.; Kubiak, P. S.; Marken, F.; Torrente-Murciano, L.; Cameron, P. J. Continuous Low Temperature Synthesis of MAPbX3 Perovskite Nanocrystals in a Flow Reactor. React. Chem. Eng. 2018, 3, 640−644. [37] Møller, C. K. Crystal Structure and Photoconductivity of Caesium Plumbohalides. Nature 1958, 182, 1436−1436. [38] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X= Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692−3696. [39] Abdulkareem, N.; Sami, S. Structure, Bandgap and Optical Properties of Cubic CsPbX3 (X= Cl, Br and I) under Hydrostatic Pressure. Ukr. J. Phys. Opt. 2019, 132−141. [40] Wu, X. G.; Ji, H.; Yan, X.; Zhong, H. Industry Outlook of Perovskite Quantum Dots for Display Applications. Nat. Nanotechnol 2022, 17, 813−816. [41] Xue, J.; Wang, X.; Jeong, J. H.; Yan, X. Fabrication, Photoluminescence and Applications of Quantum Dots Embedded Glass Ceramics. J. Chem. Eng. 2020, 383, 123082. [42] Kim, H.; Bae, S. R.; Lee, T. H.; Lee, H.; Kang, H.; Park, S.; Jang, H. W.; Kim, S. Y. Enhanced Optical Properties and Stability of CsPbBr3 Nanocrystals through Nickel Doping. Adv. Funct. Mater. 2021, 31, 2102770. [43] Zeng, Q.; Zhang, X.; Bing, Q.; Xiong, Y.; Yang, F.; Liu, H.; Liu, J. Y.; Zhang, H.; Zheng, W.; Rogach, A. L. Surface Stabilization of Colloidal Perovskite Nanocrystals Via Multi-Amine Chelating Ligands. ACS Energy Lett. 2022, 7, 1963−1970. [44] Sun, C.; Zhang, Y.; Ruan, C.; Yin, C.; Wang, X.; Wang, Y.; Yu, W. W. Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots. Adv. Mater. 2016, 28, 10088−10094. [45] Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater 2015, 14, 454−458. [46] Yang, J.; Choi, M. K.; Yang, U. J.; Kim, S. Y.; Kim, Y. S.; Kim, J. H.; Kim, D. H.; Hyeon, T. Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Lett. 2020, 21, 26−33. [47] Nakamura, S.; Mukai, T.; Senoh, M. Candela‐Class High‐Brightness InGaN/AlGaN Double‐Heterostructure Blue‐Light‐Emitting Diodes. Appl. Phys. Lett. 1994, 64, 1687−1689. [48] Jang, L. W.; Jeon, D. W.; Polyakov, A. Y.; Govorkov, A. V.; Sokolov, V. N.; Smirnov, N. B.; Cho, H. S.; Yun, J. H.; Shcherbatchev, K. D.; Baek, J. H. Electrical and Structural Properties of GaN Films and GaN/InGaN Light-Emitting Diodes Grown on Porous GaN Templates Fabricated by Combined Electrochemical and Photoelectrochemical Etching. J. Alloys Compd. 2014, 589, 507−512. [49] Dı́az, D. J.; Williamson, T. L.; Adesida, I.; Bohn, P. W.; Molnar, R. J. Morphology and Luminescence of Porous GaN Generated Via Pt-Assisted Electroless Etching. J. Vac. Sci. Technol. 2002, 20, 2375−2383. [50] Cheah, S.; Lee, S.; Ng, S.; Yam, F.; Hassan, H. A.; Hassan, Z. Luminescence Evolution of Porous GaN Thin Films Prepared Via UV-Assisted Electrochemical Etching. J. Lumin. 2015, 159, 303−311. [51] Soh, C. B.; Tay, C. B.; Tan, R. J. N.; Vajpeyi, A. P.; Seetoh, I. P.; Ansah-Antwi, K. K.; Chua, S. J. Nanopore Morphology in Porous GaN Template and Its Effect on the LEDs Emission. J. Phys. D: Appl. Phys. 2013, 46, 365102. [52] Romano, L. T.; Van de Walle, C. G.; Ager III, J. W.; Götz, W.; Kern, R. S. Effect of Si Doping on Strain, Cracking, and Microstructure in GaN Thin Films Grown by Metalorganic Chemical Vapor Deposition. J. Appl. Phys. 2000, 87, 7745−7752. [53] Massabuau, F. C. P.; Griffin, P. H.; Springbett, H. P.; Liu, Y.; Kumar, R. V.; Zhu, T.; Oliver, R. A. Dislocations as Channels for the Fabrication of Sub-Surface Porous GaN by Electrochemical Etching. APL Mater. 2020, 8. [54] Zhao, D. G.; Xu, S. J.; Xie, M. H.; Tong, S. Y.; Yang, H. Stress and Its Effect on Optical Properties of GaN Epilayers Grown on Si (111), 6H-SiC (0001), and C-Plane Sapphire. Appl. Phys. Lett. 2003, 83, 677−679. [55] Waseem, A.; Jeong, D. K.; Johar, M. A.; Kang, J. H.; Ha, J. S.; Lee, J. K.; Ryu, S. W. Enhanced Piezoelectric Output of NiO/Nanoporous GaN by Suppression of Internal Carrier Screening. Semicond. Sci. Technol. 2018, 33, 065007. [56] Lee, S. M.; Gong, S. H.; Kang, J. H.; Ebaid, M.; Ryu, S. W.; Cho, Y. H. Optically Pumped GaN Vertical Cavity Surface Emitting Laser with High Index-Contrast Nanoporous Distributed Bragg Reflector. Opt. Express 2015, 23, 11023−11030. [57] Ryu, J. H.; Katharria, Y. S.; Kim, H. Y.; Kim, H. K.; Ko, K. B.; Han, N.; Kang, J. H.; Park, Y. J.; Suh, E. K.; Hong, C. H. Stress-Relaxed Growth of N-GaN Epilayers. Appl. Phys. Lett. 2012, 100. [58] Miranda La Hera, V.; Mena, J.; Canto-Aguilar, E. J.; Reza Barzegar, H.; Carvajal, J. J.; Wågberg, T.; Gracia-Espino, E. Electronic Properties of Hexagonal V-Shaped Gallium Nitride Pits. J. Phys. Chem. C 2023, 127, 24658−24665. [59] Son, H.; Uthirakumar, P.; Polyakov, A. Y.; Park, J. H.; Lee, K. H.; Lee, I. H. Impact of Porosity on the Structural and Optoelectronic Properties of Nanoporous GaN Double Layer Fabricated Via Combined Electrochemical and Photoelectrochemical Etching. Appl. Surf. Sci. 2022, 592, 153248. [60] Tautz, M.; Díaz Díaz, D. Wet‐Chemical Etching of GaN: Underlying Mechanism of a Key Step in Blue and White LED Production. ChemistrySelect 2018, 3, 1480−1494. [61] Sato, T.; Kumazaki, Y.; Kida, H.; Watanabe, A.; Yatabe, Z.; Matsuda, S. Large Photocurrents in GaN Porous Structures with a Redshift of the Photoabsorption Edge. Semicond. Sci. Technol. 2015, 31, 014012. [62] Cheah, S. F.; Lee, S. C.; Ng, S. S.; Yam, F. K.; Abu Hassan, H.; Hassan, Z. Surface Phonon Polariton Characteristic of Honeycomb Nanoporous GaN Thin Films. Appl. Phys. Lett. 2013, 102. [63] Haberer, E. D.; Chen, C. H.; Abare, A.; Hansen, M.; Denbaars, S.; Coldren, L.; Mishra, U.; Hu, E. L. Channeling as a Mechanism for Dry Etch Damage in GaN. Appl. Phys. Lett. 2000, 76, 3941−3943. [64] Zhuang, D.; Edgar, J. H. Wet Etching of GaN, AlN, and SiC: A Review. Mater. Sci. Eng.: R: Rep. 2005, 48, 1−46. [65] Zhang, C.; Park, S. H.; Chen, D.; Lin, D. W.; Xiong, W.; Kuo, H. C.; Lin, C. F.; Cao, H.; Han, J. Mesoporous GaN for Photonic Engineering Highly Reflective GaN Mirrors as an Example. ACS Photonics 2015, 2, 980−986. [66] Chen, D.; Xiao, H.; Han, J. Nanopores in GaN by Electrochemical Anodization in Hydrofluoric Acid: Formation and Mechanism. J. Appl. Phys. 2012, 112. [67] Al-Heuseen, K.; Hashim, M. R.; Ali, N. K. Enhanced Optical Properties of Porous GaN by Using UV-Assisted Electrochemical Etching. Phys. B: Condens. Matter 2010, 405, 3176−3179. [68] Zhang, M. R.; Qin, S. J.; Peng, H. D.; Pan, G. B. Porous GaN Photoelectrode Fabricated by Photo-Assisted Electrochemical Etching Using Ionic Liquid as Etchant. Mater. Lett. 2016, 182, 363−366. [69] Mohd Razali, N. S.; Abd Rahim, A. F.; Radzali, R.; Mahmood, A.; Bahrol Anuar, M. F. Morphological, Structural and Optical Characteristics of Porous GaN Fabricated by UV-Assisted Electrochemical Etching. Solid State Phenom. 2020, 301, 3−11. [70] Shushanian, A.; Iida, D.; Zhuang, Z.; Han, Y.; Ohkawa, K. Analysis of the N-GaN Electrochemical Etching Process and Its Mechanism in Oxalic Acid. RSC Adv. 2022, 12, 4648−4655. [71] Weyher, J. L.; Van Dorp, D. H.; Conard, T.; Nowak, G.; Levchenko, I.; Kelly, J. J. Chemical Etching of GaN in KOH Solution: Role of Surface Polarity and Prior Photoetching. J. Phys. Chem. C 2022, 126, 1115−1124. [72] Alias, E. A.; Samsudin, M. E. A.; DenBaars, S.; Speck, J.; Nakamura, S.; Zainal, N. N-Face GaN Substrate Roughening for Improved Performance GaN-on-GaN LED. Microelectron. Int. 2021, 38, 93−98. [73] Pasayat, S. S.; Wu, F.; Gupta, C.; DenBaars, S. P.; Nakamura, S.; Keller, S.; Mishra, U. K. Study of Pore Geometry and Dislocations in Porous GaN Based Pseudo-Substrates Using TEM. IEEE J. Quantum Electron. 2022, 58, 1−7. [74] Fiuczek, N.; Sawicka, M.; Feduniewicz-Żmuda, A.; Siekacz, M.; Żak, M.; Nowakowski-Szkudlarek, K.; Muzioł, G.; Wolny, P.; Kelly, J. J.; Skierbiszewski, C. Electrochemical Etching of P-Type GaN Using a Tunnel Junction for Efficient Hole Injection. Acta Mater. 2022, 234, 118018. [75] Shiu, G. Y.; Wang, C. J.; Ke, Y.; Chen, K. T.; Kao, Y. C.; Chen, H.; Lin, Y. S.; Lin, C. F. Nanoporous Nitrogen-Ion-Implanted InGaN Resonant-Cavity Light-Emitting Diodes for Vertical-Cavity Surface-Emitting Lasers. ACS Appl. Nano Mater. 2024, 7, 8074–8080. [76] Zhu, T.; Liu, Y.; Ding, T.; Fu, W. Y.; Jarman, J.; Ren, C. X.; Kumar, R. V.; Oliver, R. A. Wafer-Scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors Via Electrochemical Porosification. Sci. Rep. 2017, 7, 1−8. [77] Sarkar, M.; Adams, F.; Dar, S. A.; Penn, J.; Ji, Y.; Gundimeda, A.; Zhu, T.; Liu, C.; Hirshy, H.; Massabuau, F. C.-P. Sub-Surface Imaging of Porous GaN Distributed Bragg Reflectors Via Backscattered Electrons. Microsc. Microanal. 2024, ozae028. [78] Zhao, C.; Yang, X.; Shen, L.; Luan, C.; Liu, J.; Ma, J.; Xiao, H. Fabrication and Properties of Wafer-Scale Nanoporous GaN Distributed Bragg Reflectors with Strong Phase-Separated InGaN/GaN Layers. J. Alloys Compd. 2019, 789, 658−663. [79] Han, J.; Elafandy, R.; Kang, J. H. Development of Blue Vertical Cavity Surface Emitting Lasers (VCSELs) with Nanoporous GaN. ECS Trans. 2021, 102, 17. [80] Benton, J.; Bai, J.; Wang, T. Utilisation of GaN and InGaN/GaN with Nanoporous Structures for Water Splitting. Appl. Phys. Lett. 2014, 105. [81] Heffernan, C.; Lynch, R.; Buckley, D. N. A Study of the Photoelectrochemical Etching of N-GaN in H3PO4 and KOH Electrolytes. ECS J. Solid State Sci. Technol. 2019, 9, 015003. [82] Dryden, D. M.; Nikolic, R. J.; Islam, M. S. Photogalvanic Etching of N-GaN for Three-Dimensional Electronics. J. Electron. Mater. 2019, 48, 3345−3350. [83] Mohd Razali, N. S.; Abd Rahim, A. F.; Radzali, R.; Mahmood, A. Investigation on the Effect of Current Density on Porous GaN Fabricated by UV-Assisted Electrochemical Etching. J. Electrical Electron. Eng. Res. 2021, 18, 84−88. [84] Kang, J. H.; Li, B.; Zhao, T.; Johar, M. A.; Lin, C. C.; Fang, Y. H.; Kuo, W. H.; Liang, K. L.; Hu, S.; Ryu, S. W. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots. ACS Appl. Mater. Interfaces. 2020, 12, 30890−30895. [85] Zhuang, Z.; Guo, X.; Liu, B.; Hu, F.; Li, Y.; Tao, T.; Dai, J.; Zhi, T.; Xie, Z.; Chen, P. High Color Rendering Index Hybrid III‐Nitride/Nanocrystals White Light‐Emitting Diodes. Adv. Funct. Mater. 2016, 26, 36−43. [86] Sahoo, H. Förster Resonance Energy Transfer–a Spectroscopic Nanoruler: Principle and Applications. JPPC 2011, 12, 20−30. [87] Chen, C. H.; Kuo, S. Y.; Feng, H. Y.; Li, Z. H.; Yang, S.; Wu, S. H.; Hsieh, H. Y.; Lin, Y. S.; Lee, Y. C.; Chen, W. C. Photon Color Conversion Enhancement of Colloidal Quantum Dots Inserted into a Subsurface Laterally-Extended GaN Nano-Porous Structure in an InGaN/GaN Quantum-Well Template. Opt. Express 2023, 31, 6327−6341. [88] Krishnan, C.; Brossard, M.; Lee, K. Y.; Huang, J. K.; Lin, C. H.; Kuo, H. C.; Charlton, M. D. B.; Lagoudakis, P. Hybrid Photonic Crystal Light-Emitting Diode Renders 123% Color Conversion Effective Quantum Yield. Optica 2016, 3, 503−509. [89] Miller, R. A.; So, H.; Chiamori, H. C.; Suria, A. J.; Chapin, C. A.; Senesky, D. G. A Microfabricated Sun Sensor Using GaN-on-Sapphire Ultraviolet Photodetector Arrays. Rev. Sci. Instrum. 2016, 87. [90] Lee, J. H.; Lee, W. W.; Yang, D. W.; Chang, W. J.; Kwon, S. S.; Park, W. I. Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces. 2018, 10, 14170−14174. [91] Kalita, G.; Kobayashi, M.; Shaarin, M. D.; Mahyavanshi, R. D.; Tanemura, M. Schottky Barrier Diode Characteristics of Graphene‐GaN Heterojunction with Hexagonal Boron Nitride Interfacial Layer. Phys. Status Solidi A 2018, 215, 1800089. [92] Zhuo, R.; Wang, Y.; Wu, D.; Lou, Z.; Shi, Z.; Xu, T.; Xu, J.; Tian, Y.; Li, X. High-Performance Self-Powered Deep Ultraviolet Photodetector Based on MoS2/GaN P–N Heterojunction. J. Mater. Chem. C 2018, 6, 299−303. [93] Raju, P.; Li, Q. Semiconductor Materials and Devices for Gas Sensors. J. Electrochem. Soc. 2022, 169, 057518. [94] Zhai, X.; Zhang, Y.; Zhang, Y.; Zhang, M.; Tang, J. Facile Fabrication of 3D Honeycomb-Like Porous GaN Photoanode for Reliable and Sensitive Photoelectrochemical Detection of Glucose. J. Alloys Compd. 2023, 939, 168784. [95] Abud, S. H.; Hassan, Z.; Yam, F. K. Fabrication and Characterization of Metal–Semiconductor–Metal Photodetector Based on Porous InGaN. Mater. Chem. Phys. 2014, 144, 86−91. [96] Shafa, M.; Aravindh, S. A.; Hedhili, M. N.; Mahmoud, S. T.; Pan, Y.; Ng, T. K.; Ooi, B. S.; Najar, A. Improved H2 Detection Performance of GaN Sensor with Pt/Sulfide Treatment of Porous Active Layer Prepared by Metal Electroless Etching. Int. J. Hydrog. Energy 2021, 46, 4614−4625. [97] Zhou, J.; Huang, H.; Chen, S.; Wang, M.; Zhao, D.; Yu, J.; Jin, S.; Zhong, Y.; Chen, X.; Yu, X. A High Sensitive Chemiresistive-Biosensor Based on Self-Assembly Grown GaN Porous Layer. Sens. Actuators B: Chem. 2021, 345, 130360. [98] Li, J.; Xi, X.; Li, X.; Lin, S.; Ma, Z.; Xiu, H.; Zhao, L. Ultra‐High and Fast Ultraviolet Response Photodetectors Based on Lateral Porous GaN/Ag Nanowires Composite Nanostructure. Adv. Opt. Mater. 2020, 8, 1902162. [99] Barnes, E. O.; Chen, X.; Li, P.; Compton, R. G. Voltammetry at Porous Electrodes: A Theoretical Study. J. Electroanal. Chem. 2014, 720, 92−100. [100] Zhang, M. R.; Pan, G. B. Porous GaN Electrode for Anodic Stripping Voltammetry of Silver (I). Talanta 2017, 165, 540−544. [101] Journot, T.; Bouchiat, V.; Gayral, B.; Dijon, J.; Hyot, B. Self-Assembled UV Photodetector Made by Direct Epitaxial GaN Growth on Graphene. ACS Appl. Mater. Interfaces. 2018, 10, 18857−18862. [102] Yu, R.; Wang, G.; Shao, Y.; Wu, Y.; Wang, S.; Lian, G.; Zhang, B.; Hu, H.; Liu, L.; Zhang, L. From Bulk to Porous GaN Crystal: Precise Structural Control and Its Application in Ultraviolet Photodetectors. J. Mater. Chem. C 2019, 7, 14116−14122. [103] Lin, Y.; Deng, P.; Nie, Y.; Hu, Y.; Xing, L.; Zhang, Y.; Xue, X. Room-Temperature Self-Powered Ethanol Sensing of a Pd/ZnO Nanoarray Nanogenerator Driven by Human Finger Movement. Nanoscale 2014, 6, 4604−4610. [104] Liu, Z.; Du, L.; Zhang, S. H.; Bian, A.; Fang, J. P.; Xing, C. Y.; Li, S.; Tang, J. C.; Guo, Y. F.; Tang, W. H. Achieving Highly-Efficient H2S Gas Sensor by Flower-Like SnO2–SnO/Porous GaN Heterojunction. Chin. Phys. B 2023, 32, 020701. [105] Bergmann, M. A.; Enslin, J.; Yapparov, R.; Hjort, F.; Wickman, B.; Marcinkevičius, S.; Wernicke, T.; Kneissl, M.; Haglund, Å. Electrochemical Etching of AlGaN for the Realization of Thin-Film Devices. Appl. Phys. Lett. 2019, 115. [106] Soh, C.; Tay, C.; Tan, R. J.; Vajpeyi, A.; Seetoh, I.; Ansah-Antwi, K.; Chua, S. Nanopore Morphology in Porous GaN Template and Its Effect on the LEDs Emission. J. Phys. D: Appl. Phys. 2013, 46, 365102. [107] Guo, Y.; Song, W.; Liu, Q.; Sun, Y.; Chen, Z.; He, X.; Zeng, Q.; Luo, X.; Zhang, R.; Li, S. A Porous GaN/MoO3 Heterojunction for Filter-Free, Ultra-Narrowband Ultraviolet Photodetection. J. Mater. Chem. C 2022, 10, 5116−5123. [108] Li, Q.; Liu, G.; Yu, J.; Wang, G.; Wang, S.; Cheng, T.; Chen, C.; Liu, L.; Yang, J. Y.; Xu, X. A Perovskite/Porous GaN Crystal Hybrid Structure for Ultrahigh Sensitivity Ultraviolet Photodetectors. J. Mater. Chem. C 2022, 10, 8321−8328. [109] Munir, N.; Hanif, M.; Dias, D. A.; Abideen, Z. The Role of Halophytic Nanoparticles Towards the Remediation of Degraded and Saline Agricultural Lands. ESPR 2021, 28, 60383−60405. [110] Jonkman, J.; Brown, C. M.; Wright, G. D.; Anderson, K. I.; North, A. J. Tutorial: Guidance for Quantitative Confocal Microscopy. Nat. Protoc 2020, 15, 1585−1611. [111] Pletikapić, G.; Ivošević DeNardis, N. Application of Surface Analytical Methods for Hazardous Situation in the Adriatic Sea: Monitoring of Organic Matter Dynamics and Oil Pollution. NHESS 2017, 17, 31−44. [112] De Groot, F. High-Resolution X-Ray Emission and X-Ray Absorption Spectroscopy. Chem. Rev. 2001, 101, 1779−1808. [113] Huang, W. T.; Hong, L. X.; Liu, R. S. Nanostructure Control of GaN by Electrochemical Etching for Enhanced Perovskite Quantum Dot LED Backlighting. ACS Appl. Mater. Interfaces. 2023, 15, 39505−39512. [114] Liu, J.; Cui, J.; Xiao, H. Electrochemical Etching of N-Type GaN in Different Electrolytes. J. Alloys Compd. 2024, 173846. [115] Harima, H. Properties of GaN and Related Compounds Studied by Means of Raman Scattering. J. Condens. Matter Phys. 2002, 14, R967.
|