跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐于雰
研究生(外文):HSU, YU-FEN
論文名稱:透過銅鋅配位化合物作為電洞傳輸層應用於準二維鈣鈦礦發光二極體
論文名稱(外文):Utilizing copper-zinc coordination compounds as Hole Transport Layers for Quasi-two Dimensional Perovskite Light-Emitting Diodes
指導教授:郭霽慶
指導教授(外文):KUO, CHI-CHING
口試委員:闕居振李文亞林碧軒郭霽慶
口試委員(外文):CHUEH, CHU-CHENLEE, WEN-YALIN, BI-HSUANKUO, CHI-CHING
口試日期:2024-06-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:64
中文關鍵詞:金屬有機框架準二維鈣鈦礦電洞傳輸層發光二極體
外文關鍵詞:Metal-organic frameworkQuasi-2D perovskiteHole transport layerLight-emitting diodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 文獻回顧 4
2.1鈣鈦礦材料簡介 4
2.1.1鈣鈦礦材料的基本性質介紹 4
2.1.2鈣鈦礦發光二極體之基本原理 7
2.2 提升鈣鈦礦發光二極體元件穩定性之方法 9
2.2.1透過金屬有機框架中組裝固定銫鉛鹵化物鈣鈦礦奈米晶體並提升穩定性 9
2.2.2利用金屬有機框架作為電動傳輸層調控鈣鈦礦均一尺寸 11
2.2.3調控鈣鈦鑛晶體在低溫下之光學性質 12
2.3 金屬有機框架之材料介紹 14
第三章 實驗流程及步驟 15
3.1實驗材料 15
3.2實驗儀器 17
3.3實驗流程 18
3.3.1 銅鋅配位化合物的合成 18
3.3.2 綠光準二維(qusai 2D)鈣鈦礦(CsPbBr3)晶體前驅液製備 21
3.3.3 銅鋅配位化合物之傳輸層溶液製備 21
3.3.4 鈣鈦礦光學性質量測薄膜的製備 21
3.3.5 準二維-鈣鈦礦PELEDs製備 21
3.4 儀器分析 23
3.4.1 紫外光-可見光光譜儀(UV-vis) 23
3.4.2 螢光光譜儀(PL) 24
3.4.3 傅立葉轉換紅外線光譜儀(FTIR) 25
3.4.4 時間解析螢光光譜儀(TRPL) 26
3.4.5 X光繞射儀(XRD) 27
3.4.6 掠角入射 X 光廣角散射儀(GIWAXS) 28
3.4.7 X射線光電子能譜儀(XPS) 28
3.4.8 紫外光電子能譜儀(UPS) 29
3.4.9 高解析掃描式電子顯微鏡(HR-SEM) 29
3.4.10 原子力顯微鏡(AFM) 30
3.4.11 開爾文探針力顯微鏡(KPFM) 30
3.4.12 發光二極體元件光電特性測量及各項數值介紹 31
第四章 結果與討論 32
4.1 銅鋅配位化合物合成官能基鑑定及分析 32
4.1.1 FT-IR分析銅鋅配位化合物之官能基鑑定 32
4.1.2 利用表X射線光電子能譜儀鑑定銅鋅配位化合物分析銅鋅配位化合物 33
4.2 銅鋅配位化合物的物理分析 35
4.2.1 X光繞射儀(XRD)分析銅鋅配位化合物之結晶訊號 35
4.2.2 銅鋅配位化合物之紫外光-可見光光譜儀(UV-vis)鑑定 36
4.2.3 利用UPS計算Cu-Zn@CP之價帶(HOMO) 37
4.2.4 開爾文探針力顯微鏡(KPFM)測試 40
4.2.5 熱重分析儀(TGA)測試 41
4.2.6 銅鋅配位化合物之接觸角(Contact Angle)測試 42
4.3 FT-IR探討銅鋅配位化合物與鈣鈦礦之官能基鑑定 43
4.4 Cu-Zn@CP在低溫情況下之光子衰減壽命之激子分離機制 44
4.5 銅鋅配位化合物與鈣鈦礦其晶體結構分析 46
4.5.1 X光繞射儀(XRD)分析將鈣鈦礦材料應用於不同傳輸層之比較 46
4.5.2 掠角入射 X 光廣角散射儀 (GIWAXS)分析鈣鈦礦材料與銅鋅配位化合物之結晶排列探討 48
4.6 將準二維鈣鈦礦應用於不同傳輸層之表面形貌分析 49
4.6.1 掃描式電子顯微鏡(SEM)分析鈣鈦礦薄膜之表面缺陷 49
4.6.2 原子力顯微鏡(AFM)分析鈣鈦礦薄膜之表面粗糙度 51
4.7 準二維-鈣鈦礦發光二極體之應用 52
4.7.1 探討Cu-Zn@CP/P.V.S.K. 在電場中的晶格動力學 52
4.7.2 比較PVK與Cu-Zn@CP之電荷傳輸 53
4.7.3 比較PVK與Cu-Zn@CP之表面電荷分布 54
4.7.4 發光二極體之元件性能 56
4.7.5 準二維-鈣鈦礦發光二極體元件穩定性 57
第五章 結論 59
參考文獻 60


[1] C.A. López, C. Abia, J.E. Rodrigues, F. Serrano-Sánchez, N.M. Nemes, J.L. Martínez, M.T. Fernandez-Díaz, N. Biskup, C. Alvarez-Galván, F. Carrascoso, A. Castellanos-Gomez, J.A. Alonso, Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization, SCIENTIFIC REPORTS 10(1) (2020).
[2]L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, NANO LETTERS 15(6) (2015) 3692-3696.
[3] W. Lee, Y.J. Yoo, J. Park, J.H. Ko, Y.J. Kim, H. Yun, D.H. Kim, Y.M. Song, D.H. Kim, Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows, NATURE COMMUNICATIONS 13(1) (2022).
[4]X.Z. Lan, S. Masala, E.H. Sargent, Charge-extraction strategies for colloidal quantum dot photovoltaics, NATURE MATERIALS 13(3) (2014) 233-240.
[5]H.J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells, JOURNAL OF PHYSICAL CHEMISTRY LETTERS 4(21) (2013) 3623-3630.
[6]H. Tang, S.S. He, C.W. Peng, A Short Progress Report on High-Efficiency Perovskite Solar Cells, NANOSCALE RESEARCH LETTERS 12 (2017).
[7] J.P. Cao, C.K. Liu, V. Piradi, H.L. Loi, T.Y. Wang, H.Y. Cheng, X.J. Zhu, F. Yan, Ultrathin Self-Assembly Two-Dimensional Metal-Organic Framework Films as Hole Transport Layers in Ideal-Bandgap Perovskite Solar Cells, ACS ENERGY LETTERS 7(10) (2022) 3362-3369.
[8]D.X. Yang, B.D. Zhao, T. Yang, R.C. Lai, D.C. Lan, R.H. Friend, D.W. Di, Toward Stable and Efficient Perovskite Light-Emitting Diodes, ADVANCED FUNCTIONAL MATERIALS 32(9) (2022).
[9]Z. Yuan, Y. Shu, Y. Xin, B.W. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions, CHEMICAL COMMUNICATIONS 52(20) (2016) 3887-3890.
[10]B.R. Sutherland, E.H. Sargent, Perovskite photonic sources, NATURE PHOTONICS 10(5) (2016) 295-302.
[11] J. Xing, Y.B. Zhao, M. Askerka, L.N. Quan, X.W. Gong, W.J. Zhao, J.X. Zhao, H.R. Tan, G.K. Long, L. Gao, Z.Y. Yang, O. Voznyy, J. Tang, Z.H. Lu, Q.H. Xiong, E.H. Sargent, Color-stable highly luminescent sky-blue perovskite light-emitting diodes, NATURE COMMUNICATIONS 9 (2018).
[12]H.Y. Cheng, Y.M. Feng, Y. Fu, Y.F. Zheng, Y.C. Shao, Y. Bai, Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes, JOURNAL OF MATERIALS CHEMISTRY C 10(37) (2022) 13590-13610.
[13]H. Tsai, H.H. Huang, J. Watt, C.H. Hou, J. Strzalka, J.J. Shyue, L. Wang, W.Y. Nie, Cesium Lead Halide Perovskite Nanocrystals Assembled in Metal-Organic Frameworks for Stable Blue Light Emitting Diodes, ADVANCED SCIENCE 9(14) (2022).
[14]H. Tsai, S. Shrestha, R.A. Vila, W.X. Huang, C.M. Liu, C.H. Hou, H.H. Huang, X.W. Wen, M.X. Li, G. Wiederrecht, Y. Cui, M. Cotlet, X.Y. Zhang, X.D. Ma, W.Y. Nie, Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks, NATURE PHOTONICS 15(11) (2021) 843-849.
[15]D.L. Shen, A.Y. Pang, Y.F. Li, J. Dou, M.D. Wei, Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties, CHEMICAL COMMUNICATIONS 54(10) (2018) 1253-1256.
[16]D. Heo, H. Do, S.H. Ahn, S.Y. Kim, Metal-Organic Framework Materials for Perovskite Solar Cells, POLYMERS 12(9) (2020).
[17]C. Li, J.M. Qiu, M.Q. Zhu, Z.B. Cheng, J.D. Zhang, S.C. Xiang, X.L. Zhang, Z.J. Zhang, Multifunctional anionic metal-organic frameworks enhancing stability of perovskite solar cells, CHEMICAL ENGINEERING JOURNAL 433 (2022).
[18]R.M. Nie, X.K. Chen, Z.P. Li, W.C. Chu, S. Ma, C.Q. Li, X.M. Liu, Y.H. Chen, Z.H. Zhang, W.L. Guo, Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in covalent organic frameworks, NANO RESEARCH 16(7) (2023) 9387-9397.
[19]A. Singldinger, M. Gramlich, C. Gruber, C. Lampe, A.S. Urban, Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets, ACS ENERGY LETTERS 5(5) (2020) 1380-1385.
[20]M. Gramlich, C. Lampe, J. Drewniok, A.S. Urban, How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets, JOURNAL OF PHYSICAL CHEMISTRY LETTERS 12(46) (2021) 11371-11377.
[21]M. Laitz, A.E.K. Kaplan, J. Deschamps, U. Barotov, A.H. Proppe, I. García-Benito, A. Osherov, G. Grancini, D.W. deQuilettes, K.A. Nelson, M.G. Bawendi, V. Bulovic, Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites, NATURE COMMUNICATIONS 14(1) (2023).
[22]C.J. Krajewska, A.E.K. Kaplan, M. Kick, D.B. Berkinsky, H. Zhu, T. Sverko, T. Van Voorhis, M.G. Bawendi, Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets, NANO LETTERS 23(6) (2023) 2148-2157.
[23]M. Parinejad, M.R. Yaftian, Mobile Carrier Properties of N2O2- and N3O2-Type Schiff Base Molecules Towards Copper(II) Ions, IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION 28(2) (2009) 85-90.
[24]C.C. Vidyasagar, B.M.M. Flores, V.M. Jiménez-Pérez, P.M. Gurubasavaraj, Recent advances in boron-based schiff base derivatives for organic light-emitting diodes, MATERIALS TODAY CHEMISTRY 11 (2019) 133-155.
[25]Y.W. Dong, R.Q. Fan, P. Wang, L.G. Wei, X.M. Wang, H.J. Zhang, S. Gao, Y.L. Yang, Y.L. Wang, Synthesis and characterization of substituted Schiff-base ligands and their d 10 metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells, DALTON TRANSACTIONS 44(12) (2015) 5306-5322.
[26] Z.Q. Zeng, X.H. Peng, J.M. Zheng, C.Y. Xu, Heteroatom-Doped Nickel Oxide Hybrids Derived from Metal-Organic Frameworks Based on Novel Schiff Base Ligands toward High-Performance Electrochromism, ACS APPLIED MATERIALS & INTERFACES 13(3) (2021) 4133-4145.
[27]S. Kagatikar, D. Sunil, Schiff Bases and Their Complexes in Organic Light Emitting Diode Application, JOURNAL OF ELECTRONIC MATERIALS 50(12) (2021) 6708-6723.
[28]A. Soroceanu, A. Bargan, Advanced and Biomedical Applications of Schiff-Base Ligands and Their Metal Complexes: A Review, CRYSTALS 12(10) (2022).
[29]B.H. Chen, H.H. Yao, W.T. Huang, P. Chattopadhyay, J.M. Lo, T.H. Lu, Syntheses and molecular structures of three Cu(II) complexes with tetradentate imine-phenols, SOLID STATE SCIENCES 1(2-3) (1999) 119-131.
[30]L.K. Das, A.M. Kirillov, A. Ghosh, Discrete 0D and polymeric 2D and 3D derivatives assembled from [(CuL)2Zn]2+and dicyanamide blocks (H2L = salen type Schiff bases): Genuine supramolecular isomers with distinct topologies, CRYSTENGCOMM 16(14) (2014) 3029-3039.


電子全文 電子全文(網際網路公開日期:20290723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊