|
[1] C.A. López, C. Abia, J.E. Rodrigues, F. Serrano-Sánchez, N.M. Nemes, J.L. Martínez, M.T. Fernandez-Díaz, N. Biskup, C. Alvarez-Galván, F. Carrascoso, A. Castellanos-Gomez, J.A. Alonso, Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization, SCIENTIFIC REPORTS 10(1) (2020). [2]L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, NANO LETTERS 15(6) (2015) 3692-3696. [3] W. Lee, Y.J. Yoo, J. Park, J.H. Ko, Y.J. Kim, H. Yun, D.H. Kim, Y.M. Song, D.H. Kim, Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows, NATURE COMMUNICATIONS 13(1) (2022). [4]X.Z. Lan, S. Masala, E.H. Sargent, Charge-extraction strategies for colloidal quantum dot photovoltaics, NATURE MATERIALS 13(3) (2014) 233-240. [5]H.J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells, JOURNAL OF PHYSICAL CHEMISTRY LETTERS 4(21) (2013) 3623-3630. [6]H. Tang, S.S. He, C.W. Peng, A Short Progress Report on High-Efficiency Perovskite Solar Cells, NANOSCALE RESEARCH LETTERS 12 (2017). [7] J.P. Cao, C.K. Liu, V. Piradi, H.L. Loi, T.Y. Wang, H.Y. Cheng, X.J. Zhu, F. Yan, Ultrathin Self-Assembly Two-Dimensional Metal-Organic Framework Films as Hole Transport Layers in Ideal-Bandgap Perovskite Solar Cells, ACS ENERGY LETTERS 7(10) (2022) 3362-3369. [8]D.X. Yang, B.D. Zhao, T. Yang, R.C. Lai, D.C. Lan, R.H. Friend, D.W. Di, Toward Stable and Efficient Perovskite Light-Emitting Diodes, ADVANCED FUNCTIONAL MATERIALS 32(9) (2022). [9]Z. Yuan, Y. Shu, Y. Xin, B.W. Ma, Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions, CHEMICAL COMMUNICATIONS 52(20) (2016) 3887-3890. [10]B.R. Sutherland, E.H. Sargent, Perovskite photonic sources, NATURE PHOTONICS 10(5) (2016) 295-302. [11] J. Xing, Y.B. Zhao, M. Askerka, L.N. Quan, X.W. Gong, W.J. Zhao, J.X. Zhao, H.R. Tan, G.K. Long, L. Gao, Z.Y. Yang, O. Voznyy, J. Tang, Z.H. Lu, Q.H. Xiong, E.H. Sargent, Color-stable highly luminescent sky-blue perovskite light-emitting diodes, NATURE COMMUNICATIONS 9 (2018). [12]H.Y. Cheng, Y.M. Feng, Y. Fu, Y.F. Zheng, Y.C. Shao, Y. Bai, Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes, JOURNAL OF MATERIALS CHEMISTRY C 10(37) (2022) 13590-13610. [13]H. Tsai, H.H. Huang, J. Watt, C.H. Hou, J. Strzalka, J.J. Shyue, L. Wang, W.Y. Nie, Cesium Lead Halide Perovskite Nanocrystals Assembled in Metal-Organic Frameworks for Stable Blue Light Emitting Diodes, ADVANCED SCIENCE 9(14) (2022). [14]H. Tsai, S. Shrestha, R.A. Vila, W.X. Huang, C.M. Liu, C.H. Hou, H.H. Huang, X.W. Wen, M.X. Li, G. Wiederrecht, Y. Cui, M. Cotlet, X.Y. Zhang, X.D. Ma, W.Y. Nie, Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal-organic frameworks, NATURE PHOTONICS 15(11) (2021) 843-849. [15]D.L. Shen, A.Y. Pang, Y.F. Li, J. Dou, M.D. Wei, Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties, CHEMICAL COMMUNICATIONS 54(10) (2018) 1253-1256. [16]D. Heo, H. Do, S.H. Ahn, S.Y. Kim, Metal-Organic Framework Materials for Perovskite Solar Cells, POLYMERS 12(9) (2020). [17]C. Li, J.M. Qiu, M.Q. Zhu, Z.B. Cheng, J.D. Zhang, S.C. Xiang, X.L. Zhang, Z.J. Zhang, Multifunctional anionic metal-organic frameworks enhancing stability of perovskite solar cells, CHEMICAL ENGINEERING JOURNAL 433 (2022). [18]R.M. Nie, X.K. Chen, Z.P. Li, W.C. Chu, S. Ma, C.Q. Li, X.M. Liu, Y.H. Chen, Z.H. Zhang, W.L. Guo, Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in covalent organic frameworks, NANO RESEARCH 16(7) (2023) 9387-9397. [19]A. Singldinger, M. Gramlich, C. Gruber, C. Lampe, A.S. Urban, Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets, ACS ENERGY LETTERS 5(5) (2020) 1380-1385. [20]M. Gramlich, C. Lampe, J. Drewniok, A.S. Urban, How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets, JOURNAL OF PHYSICAL CHEMISTRY LETTERS 12(46) (2021) 11371-11377. [21]M. Laitz, A.E.K. Kaplan, J. Deschamps, U. Barotov, A.H. Proppe, I. García-Benito, A. Osherov, G. Grancini, D.W. deQuilettes, K.A. Nelson, M.G. Bawendi, V. Bulovic, Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites, NATURE COMMUNICATIONS 14(1) (2023). [22]C.J. Krajewska, A.E.K. Kaplan, M. Kick, D.B. Berkinsky, H. Zhu, T. Sverko, T. Van Voorhis, M.G. Bawendi, Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets, NANO LETTERS 23(6) (2023) 2148-2157. [23]M. Parinejad, M.R. Yaftian, Mobile Carrier Properties of N2O2- and N3O2-Type Schiff Base Molecules Towards Copper(II) Ions, IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION 28(2) (2009) 85-90. [24]C.C. Vidyasagar, B.M.M. Flores, V.M. Jiménez-Pérez, P.M. Gurubasavaraj, Recent advances in boron-based schiff base derivatives for organic light-emitting diodes, MATERIALS TODAY CHEMISTRY 11 (2019) 133-155. [25]Y.W. Dong, R.Q. Fan, P. Wang, L.G. Wei, X.M. Wang, H.J. Zhang, S. Gao, Y.L. Yang, Y.L. Wang, Synthesis and characterization of substituted Schiff-base ligands and their d 10 metal complexes: structure-induced luminescence tuning behaviors and applications in co-sensitized solar cells, DALTON TRANSACTIONS 44(12) (2015) 5306-5322. [26] Z.Q. Zeng, X.H. Peng, J.M. Zheng, C.Y. Xu, Heteroatom-Doped Nickel Oxide Hybrids Derived from Metal-Organic Frameworks Based on Novel Schiff Base Ligands toward High-Performance Electrochromism, ACS APPLIED MATERIALS & INTERFACES 13(3) (2021) 4133-4145. [27]S. Kagatikar, D. Sunil, Schiff Bases and Their Complexes in Organic Light Emitting Diode Application, JOURNAL OF ELECTRONIC MATERIALS 50(12) (2021) 6708-6723. [28]A. Soroceanu, A. Bargan, Advanced and Biomedical Applications of Schiff-Base Ligands and Their Metal Complexes: A Review, CRYSTALS 12(10) (2022). [29]B.H. Chen, H.H. Yao, W.T. Huang, P. Chattopadhyay, J.M. Lo, T.H. Lu, Syntheses and molecular structures of three Cu(II) complexes with tetradentate imine-phenols, SOLID STATE SCIENCES 1(2-3) (1999) 119-131. [30]L.K. Das, A.M. Kirillov, A. Ghosh, Discrete 0D and polymeric 2D and 3D derivatives assembled from [(CuL)2Zn]2+and dicyanamide blocks (H2L = salen type Schiff bases): Genuine supramolecular isomers with distinct topologies, CRYSTENGCOMM 16(14) (2014) 3029-3039.
|