跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳致廷
研究生(外文):WU, ZHI-TING
論文名稱:探討具有二酮結構電洞傳輸材料的分子對稱性與共軛對反式鈣鈦礦太陽能元件之光伏性能研究
論文名稱(外文):Study the impact of molecular symmetry and conjugation on the photovoltaic performance of the inverted perovskite solar cells with the hole transport materials containing the beta-diketone
指導教授:蘇昭瑾
指導教授(外文):SU, CHAOCHIN
口試委員:蘇昭瑾李文仁王修璇林家弘
口試委員(外文):SU, CHAOCHINLI, WEN-RENWANG, HSIOU-HSUANLIN, JA-HON
口試日期:2024-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:73
中文關鍵詞:反式鈣鈦礦太陽能元件反式鈣鈦礦太陽能電池烯醇β-二酮鈍化
外文關鍵詞:Inverted perovskite solar cellEnolBeta-diketonePassivate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要 i
ABSTRACT ii
誌謝 iii
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 鈣鈦礦介紹 4
2.2 鈣鈦礦太陽能元件發展簡介 5
2.2.1 溶劑工程 7
2.2.2 退火工藝 8
2.2.3 缺陷鈍化 10
2.3 鈣鈦礦太陽能元件工作原理 12
2.3.1 開路電壓 (Open circuit voltage, VOC) 13
2.3.2 短路電流密度 (Short circuit current density, JSC) 13
2.3.3 填充因子 (Fill factor, FF) 14
2.3.4 光電轉換效率 (Power conversion efficiency, PCE) 14
2.4 元件組成 15
2.4.1 導電基材 15
2.4.2 電洞傳輸層 Hole Transport Layer (HTL) 15
2.4.3 鈣鈦礦層 Perovskite Layer 19
2.4.4 電子傳輸層 Electron Transport Layer (ETL) 20
2.4.5 電洞阻擋層Hole Blocking Layer (HBL) 21
2.4.6 金屬陰極 22
第三章 實驗介紹 23
3.1 實驗藥品與材料 23
3.2 實驗儀器 24
3.3 電洞傳輸材料之合成 26
3.4 反式鈣鈦礦元件材料製備 27
3.4.1 電洞傳輸材料溶液配製 27
3.4.2 鈣鈦礦前驅液配製 27
3.4.3 電子傳輸材料溶液配製 27
3.4.4 電洞阻擋層配製 27
3.4.5 金屬陰極製備 28
3.4.6 光伏元件製作流程 28
3.5 元件製作儀器與分析儀器簡介 30
3.5.1 元件製作儀器簡介 30
3.5.2 分析儀器簡介 32
第四章 結果與討論 42
4.1 DK系列性質分析 42
4.1.1 UV-vis吸收、穿透光譜分析 42
4.1.2 電化學性質分析 44
4.1.3 熱穩定性分析 45
4.1.4 空間電荷限制電流(Space Charge Limited Current, SCLC) 46
4.1.5 DK薄膜水接觸角觀測 47
4.2 DK系列與鈣鈦礦共同分析 48
4.2.1 塗佈於DK上之鈣鈦礦X光繞射光譜分析 48
4.2.2 塗佈於DK上之鈣鈦礦掃描式電子顯微鏡俯視 49
4.2.3 塗佈於DK上之鈣鈦礦原子力顯微鏡俯視 50
4.2.4 塗佈於DK上之鈣鈦礦之UV-vis吸收光譜 51
4.2.5 塗佈於DK上之鈣鈦礦螢光光譜分析 52
4.2.6 不同HTMs之鈣鈦礦缺陷密度 53
4.2.7 DK鈍化鈣鈦礦缺陷之X光電子能譜儀分析 54
4.3 DK系列元件之性能分析 56
4.3.1 不同濃度之元件光伏特性比較 56
4.3.2 優化濃度後之最高效率與平均效率 57
4.3.3 電流穩定性測試 60
4.3.4 長效測試 61
4.4 其餘系列HTMs效率更新 63
第五章 結論 70
參考文獻 71


1.Williams, D.R., Sun Fact Sheet. 2013.
2.Attfield, J.P., P. Lightfoot, and R.E. Morris, Perovskites. Dalton Transactions, 2015. 44(23): p. 10541-10542.
3.Tidrow, S.C., Mapping comparison of Goldschmidt's tolerance factor with Perovskite structural conditions. Ferroelectrics, 2014. 470(1): p. 13-27.
4.Ferdani, D.W., et al., Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy & Environmental Science, 2019. 12(7): p. 2264-2272.
5.Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 2009. 131(17): p. 6050-6051.
6.Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2(1): p. 591.
7.Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
8.Liu, T., et al., Inverted perovskite solar cells: progresses and perspectives. Advanced energy materials, 2016. 6(17): p. 1600457.
9.Kebede, Z. and S.-E. Lindquist, Donor–acceptor interaction between non-aqueous solvents and I2 to generate I− 3, and its implication in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 1999. 57(3): p. 259-275.
10.Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 2014. 13(9): p. 897-903.
11.Zhou, Y., et al., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A, 2015. 3(15): p. 8178-8184.
12.Xiao, Z., et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Advanced Materials, 2014. 26(37).
13.Tian, L., et al., Post-treatment of perovskite films toward efficient solar cells via mixed solvent annealing. ACS Applied Energy Materials, 2019. 2(7): p. 4954-4963.
14.Yi, A., et al., The synergistic effect of cooperating solvent vapor annealing for high-efficiency planar inverted perovskite solar cells. Journal of materials chemistry A, 2019. 7(48): p. 27267-27277.
15.Gao, F., et al., Recent progresses on defect passivation toward efficient perovskite solar cells. Advanced Energy Materials, 2020. 10(13): p. 1902650.
16.Wang, R., et al., β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 2021. 12(49): p. 11772-11778.
17.Yan, W., et al., Hole‐transporting materials in inverted planar perovskite solar cells. Advanced Energy Materials, 2016. 6(17): p. 1600474.
18.Kirchmeyer, S. and K. Reuter, Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). Journal of Materials Chemistry, 2005. 15(21): p. 2077-2088.
19.Rombach, F.M., S.A. Haque, and T.J. Macdonald, Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy & Environmental Science, 2021. 14(10): p. 5161-5190.
20.Wang, Y., et al., Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. Journal of the American Chemical Society, 2020. 142(39): p. 16632-16643.
21.Yu, X., et al., Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021. 82: p. 105701.
22.Yan, P., et al., Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy & Environmental Science, 2022. 15(9): p. 3630-3669.
23.Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar energy, 2016. 130: p. 139-147.
24.Koh, T.M., et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. The Journal of Physical Chemistry C, 2014. 118(30): p. 16458-16462.
25.Cao, X., et al., Enhanced efficiency of perovskite solar cells by introducing controlled chloride incorporation into MAPbI3 perovskite films. Electrochimica Acta, 2018. 275: p. 1-7.
26.Gu, S., et al., Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Advanced Materials, 2020. 32(27): p. 1907392.
27.Said, A.A., J. Xie, and Q. Zhang, Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019. 15(27): p. 1900854.
28.Chen, C., et al., Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC advances, 2017. 7(57): p. 35819-35826.

電子全文 電子全文(網際網路公開日期:20260801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top