|
1.Williams, D.R., Sun Fact Sheet. 2013. 2.Attfield, J.P., P. Lightfoot, and R.E. Morris, Perovskites. Dalton Transactions, 2015. 44(23): p. 10541-10542. 3.Tidrow, S.C., Mapping comparison of Goldschmidt's tolerance factor with Perovskite structural conditions. Ferroelectrics, 2014. 470(1): p. 13-27. 4.Ferdani, D.W., et al., Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy & Environmental Science, 2019. 12(7): p. 2264-2272. 5.Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 2009. 131(17): p. 6050-6051. 6.Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2(1): p. 591. 7.Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647. 8.Liu, T., et al., Inverted perovskite solar cells: progresses and perspectives. Advanced energy materials, 2016. 6(17): p. 1600457. 9.Kebede, Z. and S.-E. Lindquist, Donor–acceptor interaction between non-aqueous solvents and I2 to generate I− 3, and its implication in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 1999. 57(3): p. 259-275. 10.Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 2014. 13(9): p. 897-903. 11.Zhou, Y., et al., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A, 2015. 3(15): p. 8178-8184. 12.Xiao, Z., et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Advanced Materials, 2014. 26(37). 13.Tian, L., et al., Post-treatment of perovskite films toward efficient solar cells via mixed solvent annealing. ACS Applied Energy Materials, 2019. 2(7): p. 4954-4963. 14.Yi, A., et al., The synergistic effect of cooperating solvent vapor annealing for high-efficiency planar inverted perovskite solar cells. Journal of materials chemistry A, 2019. 7(48): p. 27267-27277. 15.Gao, F., et al., Recent progresses on defect passivation toward efficient perovskite solar cells. Advanced Energy Materials, 2020. 10(13): p. 1902650. 16.Wang, R., et al., β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 2021. 12(49): p. 11772-11778. 17.Yan, W., et al., Hole‐transporting materials in inverted planar perovskite solar cells. Advanced Energy Materials, 2016. 6(17): p. 1600474. 18.Kirchmeyer, S. and K. Reuter, Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). Journal of Materials Chemistry, 2005. 15(21): p. 2077-2088. 19.Rombach, F.M., S.A. Haque, and T.J. Macdonald, Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy & Environmental Science, 2021. 14(10): p. 5161-5190. 20.Wang, Y., et al., Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. Journal of the American Chemical Society, 2020. 142(39): p. 16632-16643. 21.Yu, X., et al., Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021. 82: p. 105701. 22.Yan, P., et al., Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy & Environmental Science, 2022. 15(9): p. 3630-3669. 23.Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar energy, 2016. 130: p. 139-147. 24.Koh, T.M., et al., Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. The Journal of Physical Chemistry C, 2014. 118(30): p. 16458-16462. 25.Cao, X., et al., Enhanced efficiency of perovskite solar cells by introducing controlled chloride incorporation into MAPbI3 perovskite films. Electrochimica Acta, 2018. 275: p. 1-7. 26.Gu, S., et al., Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Advanced Materials, 2020. 32(27): p. 1907392. 27.Said, A.A., J. Xie, and Q. Zhang, Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019. 15(27): p. 1900854. 28.Chen, C., et al., Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC advances, 2017. 7(57): p. 35819-35826.
|