1.農業部動物保護資訊網,家犬、家貓數量調查。https://animal.moa.gov.tw/Frontend/Know/PageTabList?TabID=31B05CB46007226417F0F5FB8A80096E#tab2。
2.財政部統計處,財政統計通報 第3號。https://service.mof.gov.tw/public/Data/statistic/bulletin/112/%E7%AC%AC3%E8%99%9F-%E5%AF%B5%E7%89%A9.pdf。
3.中華民國環境工程學會,環境工程會刊第20卷第2期,空氣汙染,工業排氣異味控制案例,周明顯,2009。
4.Leonardos, G., Kendall, D., & Barnard, N. (1969). Odor Threshold Determinations of 53 Odorant Chemicals. Journal of the Air Pollution Control Association, 19(2), 91–95. https://doi.org/10.1080/00022470.1969.10466465
5.Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B: Chemical, 18(1-3), 210-211.
6.Gosain, A., & Sardana, S. (2017, September). Handling class imbalance problem using oversampling techniques: A review. In 2017 international conference on advances in computing, communications and informatics (ICACCI) (pp. 79-85). IEEE.
7.周家德(2005)。飼料乾燥排氣化學洗滌除臭。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/t92n2u。8.吳靜怡(2009)。含硫異味物質之化學及生物氧化。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/c74rgs。9.吳亞臻(2017)。高效率滴濾式生物濾床及化學氧化處理含揮發性有機物排氣。﹝博士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/hrwg62。10.行政院環境保護署環境保護人員訓練所,「空氣汙染防制專責人員訓練教材」,異味產生源控制方法概論,How-Ming Lee,2023。
11.Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J. Evaluating the 'Labeled Magnitude Scale' for measuring sensations of taste and smell. Chem Senses. 1996 Jun;21(3):323-34. doi: 10.1093/chemse/21.3.323. PMID: 8670711.
12.楊欣怡(2015)。污泥焚化排氣之化學洗滌法除臭。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/554cqx。13.Brewer, M. Susan, and Keith R. Cadwallader. "Overview of odor measurement techniques." Urbana 51 (2004): 61801.
14.Sarkar, Ujjaini, and Stephen E. Hobbs. "Odour from municipal solid waste (MSW) landfills: A study on the analysis of perception." Environment international 27.8 (2002): 655-662.
15.Holmberg, Martin, et al. "Drift counteraction for an electronic nose." Sensors and Actuators B: Chemical 36.1-3 (1996): 528-535.
16.Bharne, Pankaj K., V. S. Gulhane, and Shweta K. Yewale. "Data clustering algorithms based on swarm intelligence." 2011 3rd international conference on electronics computer technology. Vol. 4. IEEE, 2011.
17.Zhang, Lei, and David Zhang. "Domain adaptation extreme learning machines for drift compensation in E-nose systems." IEEE Transactions on instrumentation and measurement 64.7 (2014): 1790-1801.
18.Zhang, Lei, et al. "A novel semi-supervised learning approach in artificial olfaction for E-nose application." IEEE Sensors Journal 16.12 (2016): 4919-4931.
19.Rehman, Atiq Ur, et al. "Multi-classifier tree with transient features for drift compensation in electronic nose." IEEE Sensors Journal 21.5 (2020): 6564-6574.
20.ur Rehman, Atiq, and Amine Bermak. "Heuristic random forests (HRF) for drift compensation in electronic nose applications." IEEE Sensors Journal 19.4 (2018): 1443-1453.
21.ur Rehman, Atiq, et al. "Salp Swarm Algorithm for Drift Compensation in E-nose." 2023 15th International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2023.
22.魏敏如(2022)。處理不平衡資料之方法比較。﹝碩士論文。國立中興大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/86b827。23.Mohammed, Roweida, Jumanah Rawashdeh, and Malak Abdullah. "Machine learning with oversampling and undersampling techniques: overview study and experimental results." 2020 11th international conference on information and communication systems (ICICS). IEEE, 2020.
24.Bahrami, Mahsa, Mansour Vali, and Hanif Kia. "Breast Cancer Detection from Imbalanced Clinical Data: A Comparative Study of Sampling Methods." 2023 30th National and 8th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2023.
25.Eqibuana. "How to Deal with Imbalanced Data in Classification Tasks? " Medium, 2021. https://eqibuana.medium.com/how-to-deal-with-imbalanced-data-in-classification-tasks-1046e5be0e0
26.聖傑環保科技有限公司,洗滌塔系統。https://sj-bloc.com/%E6%B4%97%E6%BB%8C%E5%A1%94%E7%B3%BB%E7%B5%B1/
27.Branigan, Benjamin, and Prasanna Tadi. "Physiology, olfactory." StatPearls [Internet]. StatPearls Publishing, 2023.
28.Science Clarified, Smell. http://www.scienceclarified.com/Ro-Sp/Smell.html
29.SHINYEI technology, IAQ Sensing, handheld odor meter. https://www.shinyei.co.jp/stc/eng/products/iaq/odor.html
30.Klein, Markus. "MODBUS TCP/IP."
31.Nebraska Diary Extension, "What Weather Conditions Cause Neighbors to Experience Odor? " https://dairy.unl.edu/documents/Odor%20Fact%20Sheets.pdf
32.Melse, R. W., and N. W. M. Ogink. "Air scrubbing techniques for ammonia and odor reduction at livestock operations: Review of on-farm research in the Netherlands." Transactions of the ASAE 48.6 (2005): 2303-2313.
33.Berg-Munch, B., and P. O. Fanger. "The influence of air temperature on the perception of body odor." Environment International 8.1-6 (1982): 333-335.
34.Guo, H., et al. "Simulation of odor dispersions as impacted by weather conditions." Livestock Environment VI, Proceedings of the 6th International Symposium 2001. American Society of Agricultural and Biological Engineers, 2001.
35.Douglas W. Hamilton, J. D. Carlson. "Movement of Odors Off-Farm" Oklahoma State University, 2019. https://extension.okstate.edu/fact-sheets/movement-of-odors-off-farm.html.
36.Tran, Quang Duc, and Panos Liatsis. "A Modified Equal Error Rate Based User-Specific Normalization for Multimodal Biometrics." 2013 Sixth International Conference on Developments in eSystems Engineering. IEEE, 2013.
37.Kappal, Sunil. "Data normalization using median median absolute deviation MMAD based Z-score for robust predictions vs. min–max normalization." Lond. J. Res. Sci. Nat. Form 19.10.13140 (2019).
38.ROCHESTER, weather blog, "Lake Effect Guide Based on Wind Direction", Christine Gregory, 2021.
39.GES DISC, "Derive Wind Speed and Direction With MERRA-2 Wind Components", Dana Ostrenga, 2019.
40.台中市沙鹿區公所,沙鹿鎮誌。https://www.shalu.taichung.gov.tw/1364684/post 。
41.Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.
42.Niharika, Gunukula, and Annam Indhu Lekha. "Predicting Survival of People with Heart Failure Using Oversampling, Feature Selections and Dimensionality Reduction." 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE). Vol. 7. IEEE, 2022.
43.Arnold, C., et al. "Sub-surface probe module equipped with the Karlsruhe Micronose KAMINA using a hierarchical LDA for the recognition of volatile soil pollutants." Sensors and Actuators B: Chemical 116.1-2 (2006): 90-94.
44.McInnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold approximation and projection for dimension reduction." arXiv preprint arXiv:1802.03426 (2018).
45.Patil, Sachin Subhash, and Shefali Pratap Sonavane. "Enriched over_sampling techniques for improving classification of imbalanced big data." 2017 IEEE third international conference on big data computing service and applications (BigDataService). IEEE, 2017.
46.Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." Journal of artificial intelligence research 16 (2002): 321-357.
47.Fernando López. " SMOTE: Synthetic Data Augmentation for Tabular Data " Medium, 2021.
48.Han, Hui, Wen-Yuan Wang, and Bing-Huan Mao. "Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning." International conference on intelligent computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.
49.He, Haibo, et al. "ADASYN: Adaptive synthetic sampling approach for imbalanced learning." 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). Ieee, 2008.
50.Tomek, Ivan. "Two modifications of CNN." (1976).
51.Zeng, Min, et al. "Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data." 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS). IEEE, 2016.
52.MaDi’s Blog, ML/DL資料前處理,2020。https://dysonma.github.io/2020/12/05/ML-DL-%E8%B3%87%E6%96%99%E5%89%8D%E8%99%95%E7%90%86/。
53.Dietterich, Thomas G. "Ensemble learning." The handbook of brain theory and neural networks 2.1 (2002): 110-125.
54.Tony Yui. " Understanding Random Forest " Medium, 2019. https://towardsdatascience.com/understanding-random-forest-58381e0602d2 .
55.Brudzewski, Kazimierz, et al. "Classification of gasoline with supplement of bio-products by means of an electronic nose and SVM neural network." Sensors and Actuators B: Chemical 113.1 (2006): 135-141.
56.Analytics Yogi, Support Vector Machine (SVM) Python Example, Ajitesh Kumar, 2023. https://vitalflux.com/classification-model-svm-classifier-python-example/ .
57.Nour AI-Rahman AI-Serw. " K-nearest Neighbor: The maths behind it, how it works and an example " Medium, 2021. https://medium.com/analytics-vidhya/k-nearest-neighbor-the-maths-behind-it-how-it-works-and-an-example-f1de1208546c .
58.Krishna, K., and M. Narasimha Murty. "Genetic K-means algorithm." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 29.3 (1999): 433-439.
59.Wan, Huan, et al. "A novel gaussian mixture model for classification." 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019.
60.Leevy, Joffrey L., et al. "One-Class Classifier Performance: Comparing Majority versus Minority Class Training." 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2023.
61.Li, Zhenchuan, et al. "A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection." Expert Systems with Applications 175 (2021): 114750.
62.Ghafoori, Zahra, et al. "Unsupervised parameter estimation for one-class support vector machines." Advances in Knowledge Discovery and Data Mining: 20th Pacific-Asia Conference, PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings, Part II 20. Springer International Publishing, 2016.
63.Sickit learn, One-class SVM with non-linear kernel(RBF). https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html#sphx-glr-auto-examples-svm-plot-oneclass-py .
64.Shahapure, Ketan Rajshekhar, and Charles Nicholas. "Cluster quality analysis using silhouette score." 2020 IEEE 7th international conference on data science and advanced analytics (DSAA). IEEE, 2020.
65.Santos, Jorge M., and Mark Embrechts. "On the use of the adjusted rand index as a metric for evaluating supervised classification." International conference on artificial neural networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
66.Estévez, Pablo A., et al. "Normalized mutual information feature selection." IEEE Transactions on neural networks 20.2 (2009): 189-201.
67.Krstinić, Damir, et al. "Multi-label classifier performance evaluation with confusion matrix." Computer Science & Information Technology 1 (2020): 1-14.
68.Myerson, Joel, Leonard Green, and Missaka Warusawitharana. "Area under the curve as a measure of discounting." Journal of the experimental analysis of behavior 76.2 (2001): 235-243.
69.Ramadan, Montaser NA, et al. "Portable AI-powered spice recognition system using an eNose based on metal oxide gas sensors." 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE, 2023.