|
[1]OOSGA. "物聯網發展現況、應用場域、全球趨勢." https://zh.oosga.com/iot/ (accessed 2023 NOV. 30). [2]R. Kaur and M. Singh, "A Survey on Zero-Day Polymorphic Worm Detection Techniques," IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1520-1549, 2014, doi: 10.1109/SURV.2014.022714.00160. [3]WIKIPEDIA. "Intrusion detection system." https://en.wikipedia.org/wiki/Intrusion_detection_system (accessed 2024 JAN. 25). [4]M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," presented at the Proceedings of the 13th USENIX conference on System administration, Seattle, Washington, 1999. [5]V. Paxson, "Bro: a system for detecting network intruders in real-time," presented at the Proceedings of the 7th conference on USENIX Security Symposium - Volume 7, San Antonio, Texas, 1998. [6]Open Information Security Foundation (OISF). "Suricata." https://suricata.io/ (accessed 2024 MAR. 27). [7]R. Awati. "security information management (SIM)." https://www.techtarget.com/searchsecurity/definition/security-information-management-SIM (accessed 2024 MAR. 27). [8]WIKIPEDIA. "Security information and event management." https://en.wikipedia.org/wiki/Security_information_and_event_management (accessed 2024 MAR. 27). [9]J. GREIG. "New technique leads to largest DDoS attacks ever, Google and Amazon say." https://therecord.media/largest-ddos-incidents-amazon-cloudflare-google (accessed 2024 MAR. 27). [10]M. F. Umer, M. Sher, and Y. Bi, "Flow-based intrusion detection: Techniques and challenges," Computers & Security, vol. 70, pp. 238-254, 2017/09/01/ 2017, doi: https://doi.org/10.1016/j.cose.2017.05.009. [11]I. Sharafaldin, A. Gharib, A. Habibi Lashkari, and A. Ghorbani, "Towards a Reliable Intrusion Detection Benchmark Dataset," Software Networking, vol. 2017, pp. 177-200, 01/01 2017, doi: 10.13052/jsn2445-9739.2017.009. [12]I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization," in International Conference on Information Systems Security and Privacy, 2018. [13]M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, "X-IIoTID: A Connectivity-Agnostic and Device-Agnostic Intrusion Data Set for Industrial Internet of Things," IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3962-3977, 2022, doi: 10.1109/JIOT.2021.3102056. [14]M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, "Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning," IEEE Access, vol. 10, pp. 40281-40306, 2022, doi: 10.1109/ACCESS.2022.3165809. [15]V. Hnamte and J. Hussain, "DCNNBiLSTM: An Efficient Hybrid Deep Learning-Based Intrusion Detection System," Telematics and Informatics Reports, vol. 10, p. 100053, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.teler.2023.100053. [16]M. Verkerken, L. D’hooge, T. Wauters, B. Volckaert, and F. De Turck, "Towards Model Generalization for Intrusion Detection: Unsupervised Machine Learning Techniques," Journal of Network and Systems Management, vol. 30, no. 1, p. 12, 2021/10/17 2021, doi: 10.1007/s10922-021-09615-7. [17]A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, "An Overview of IP Flow-Based Intrusion Detection," IEEE Communications Surveys & Tutorials, vol. 12, no. 3, pp. 343-356, 2010, doi: 10.1109/SURV.2010.032210.00054. [18]M. Sheeraz et al., "Effective Security Monitoring Using Efficient SIEM Architecture," Human-centric Computing and Information Sciences, vol. 13, 05/30 2023, doi: 10.22967/HCIS.2023.13.023. [19]P. Porras and A. Valdes, Live traffic analysis of TCP/IP gateways. 1998. [20]H. Debar, M. Dacier, and A. Wespi, "A revised taxonomy for intrusion-detection systems," Annales Des Télécommunications, vol. 55, no. 7, pp. 361-378, 2000/07/01 2000, doi: 10.1007/BF02994844. [21]M. A. Ferrag et al., "Revolutionizing Cyber Threat Detection With Large Language Models: A Privacy-Preserving BERT-Based Lightweight Model for IoT/IIoT Devices," IEEE Access, vol. 12, pp. 23733-23750, 2024, doi: 10.1109/ACCESS.2024.3363469. [22]E. Knapp, "Chapter 8 - Exception, Anomaly, and Threat Detection," in Industrial Network Security, E. Knapp Ed. Boston: Syngress, 2011, pp. 189-214. [23]I. Vurdelja, I. Blažić, D. Drašković, and B. Nikolić, "Detection of Linux Malware Using System Tracers – An Overview of Solutions," IcEtran 2020, to be published. [24]Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, "A survey on heuristic malware detection techniques," in The 5th Conference on Information and Knowledge Technology, 28-30 May 2013 2013, pp. 113-120, doi: 10.1109/IKT.2013.6620049. [25]T. Ban, T. Takahashi, S. Ndichu, and D. Inoue, "Breaking Alert Fatigue: AI-Assisted SIEM Framework for Effective Incident Response," Applied Sciences, vol. 13, no. 11, doi: 10.3390/app13116610. [26]M. Nawaz, M. A. Paracha, A. Majid, and H. Durad, "Attack Detection From Network Traffic using Machine Learning," VFAST Transactions on Software Engineering, vol. 8, no. 1, pp. 1-7, 11/17 2020, doi: 10.21015/vtse.v8i1.571. [27]M. Zivkovic, M. Tair, V. K, N. Bacanin, Š. Hubálovský, and P. Trojovský, "Novel hybrid firefly algorithm: an application to enhance XGBoost tuning for intrusion detection classification," PeerJ Computer Science, vol. 8, p. e956, 2022/04/29 2022, doi: 10.7717/peerj-cs.956. [28]P. Devan and N. Khare, "An efficient XGBoost–DNN-based classification model for network intrusion detection system," Neural Computing and Applications, vol. 32, no. 16, pp. 12499-12514, 2020/08/01 2020, doi: 10.1007/s00521-020-04708-x. [29]C. Hazman, A. Guezzaz, S. Benkirane, and M. Azrour, "lIDS-SIoEL: intrusion detection framework for IoT-based smart environments security using ensemble learning," Cluster Computing, vol. 26, no. 6, pp. 4069-4083, 2023/12/01 2023, doi: 10.1007/s10586-022-03810-0. [30]P. Rajasekaran and V. Magudeeswaran, "Malicious attacks detection using GRU-BWFA classifier in pervasive computing," Biomedical Signal Processing and Control, vol. 79, p. 104219, 2023/01/01/ 2023, doi: https://doi.org/10.1016/j.bspc.2022.104219. [31]J. K. Samriya, R. Tiwari, X. Cheng, R. K. Singh, A. Shankar, and M. Kumar, "Network intrusion detection using ACO-DNN model with DVFS based energy optimization in cloud framework," Sustainable Computing: Informatics and Systems, vol. 35, p. 100746, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.suscom.2022.100746. [32]R. K. Vigneswaran, R. Vinayakumar, K. P. Soman, and P. Poornachandran, "Evaluating Shallow and Deep Neural Networks for Network Intrusion Detection Systems in Cyber Security," in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 10-12 July 2018 2018, pp. 1-6, doi: 10.1109/ICCCNT.2018.8494096. [33]Z. Chen et al., "Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats," ACM Computing Surveys, vol. 55, no. 5, p. Article 105, 2022, doi: 10.1145/3530812. [34]N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson, "A Methodology for Testing Intrusion Detection Systems," IEEE Transactions on Software Engineering, vol. 22, no. 10, pp. 719–729, 1996, doi: 10.1109/32.544350. [35]T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," presented at the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016. [Online]. Available: https://doi.org/10.1145/2939672.2939785. [36]Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting," in Computational Learning Theory, Berlin, Heidelberg, P. Vitányi, Ed., 1995// 1995: Springer Berlin Heidelberg, pp. 23-37.
|