跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊智堯
研究生(外文):YANG, JHIH-YAO
論文名稱:無機聚合技術導入碳化矽粉體合成製程可行性之研究
論文名稱(外文):A study on the feasibility of introducing geopolymer technology into SiC powder synthesis process
指導教授:李韋皞
指導教授(外文):Lee, Wei-Hao
口試委員:吳佳正林凱隆李韋皞
口試委員(外文):Wu, Jia-ZhengLin, Kae-LongLee, Wei-Hao
口試日期:2024-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:165
中文關鍵詞:無機聚合技術碳化矽碳熱還原法矽灰石墨
外文關鍵詞:GeopolymerSilicon carbideCarbothermal reductionSilica FumeGraphite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT iii
致謝 v
目錄 vii
圖目錄 xii
表目錄 xviii
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究架構 3
第二章 文獻回顧 5
2.1碳化矽 5
2.1.1碳化矽之應用 9
2.1.2碳化矽合成方式 11
2.1.3碳化矽粉體微觀結構分析 20
2.2無機聚合技術 25
2.2.1無機聚合材料-固體反應原料 27
2.2.2無機聚合材料-鹼性溶液 31
2.2.3無機聚合材料-材料特性 32
2.3利用無機聚合技術燒結陶瓷及材料合成之相關研究 36
2.3.1無機聚合坯體燒結陶瓷磚及板材 36
2.3.2無機聚合坯體燒結白榴石陶瓷 38
2.3.3無機聚合坯體合成碳化矽粉體 41
第三章 研究方法與實驗流程 44
3.1實驗材料 44
3.1.1固體原料 44
3.1.1.1變高嶺土 44
3.1.1.2玻璃粉 46
3.1.1.3矽灰 48
3.1.1.4石墨粉 49
3.1.1.5碳黑(黑煙) 51
3.1.1.6碳化矽 52
3.1.2鹼性溶液 54
3.1.2.1氫氧化鉀 54
3.1.2.2矽酸鉀溶液 54
3.2儀器設備 55
3.2.1掌上型攪拌機 55
3.2.2單軸油壓機 56
3.2.3石墨化爐 57
3.2.4 X射線螢光能譜儀 58
3.2.5雷射粒徑分析儀 59
3.2.6 X射線繞射分析儀(XRD) 60
3.2.7掃描式電子顯微鏡(SEM) 61
3.2.8高能量化學分析電子能譜儀(XPS) 62
3.2.9可程式高溫電爐 63
3.2.10冷場發掃描式電子顯微鏡(FE-SEM) 64
3.2.11穿透式電子顯微鏡(TEM) 65
3.2.12感應耦合電漿原子放射光譜分析儀(ICP-OES) 66
3.3實驗流程 67
3.3.1導入無機聚合技術製備試體對合成碳化矽粉體之影響 67
3.3.2矽源對合成碳化矽粉體之影響 70
3.3.3合成溫度及碳源對於合成碳化矽之影響 72
3.3.4碳矽莫爾比對碳化矽粉體合成之影響 74
3.3.5鹼液濃度及混拌時間對合成碳化矽之影響 76
3.3.6添加晶種對於碳化矽合成之影響 78
3.3.7利用磷酸去除鉀離子之影響性 80
第四章 結果與討論 82
4.1導入無機聚合技術製備試體對合成碳化矽粉體之影響 82
4.1.1合成後之碳化矽粉體分析 82
4.1.2除碳後之碳化矽粉體分析 84
4.1.2.1 XRD晶相分析 84
4.1.2.2 XPS表面化學分析 85
4.1.3純化後之碳化矽粉體分析 86
4.1.3.1 XRD晶相分析 86
4.1.3.2 FE-SEM及EDS微觀結構分析 87
4.1.3.3 TEM微觀結構分析 88
4.1.4小結 90
4.2矽源的改變對於合成碳化矽的影響 91
4.2.1合成後之碳化矽粉體分析 91
4.2.2除碳後之碳化矽粉體分析 93
4.2.3純化後之碳化矽粉體分析 94
4.2.3.1XRD晶相分析 94
4.2.3.2 FE-SEM及EDS微觀結構分析 95
4.2.4小結 98
4.3合成溫度及碳源的改變對於合成碳化矽之影響 99
4.3.1合成後之碳化矽粉體分析 99
4.3.2除碳後之碳化矽粉體分析 101
4.3.3純化後之碳化矽粉體分析 104
4.3.3.1 XRD晶相分析 104
4.3.3.2純化後之FE-SEM及EDS微觀結構分析 106
4.3.3.3純化後之TEM微觀結構分析 107
4.3.4小結 110
4.4碳矽莫爾比的改變對於合成碳化矽之影響 111
4.4.1合成後之碳化矽粉體分析 111
4.4.2除碳後之碳化矽粉體分析 113
4.4.3純化後之碳化矽粉體分析 115
4.4.3.1XRD晶相分析 115
4.4.3.2 FE-SEM及EDS微觀結構分析 116
4.4.3.3 TEM微觀結構分析 120
4.4.4小結 122
4.5鹼液濃度及攪拌時間對於合成碳化矽粉體之影響 123
4.5.1合成後之碳化矽粉體分析 123
4.5.2除碳後之碳化矽粉體分析 125
4.5.3純化後之碳化矽粉體分析 127
4.5.3.1 XRD晶相分析 127
4.5.3.2 FE-SEM及EDS微觀結構分析 129
4.5.4小結 135
4.6加入晶種對於碳化矽合成之影響 136
4.6.1合成後之碳化矽粉體分析 136
4.6.2除碳後之碳化矽粉體分析 137
4.6.3純化後之碳化矽粉體分析 138
4.6.3.1 XRD晶相分析 138
4.6.3.2 FE-SEM微觀結構分析 139
4.6.4小結 141
4.7利用磷酸去除鉀離子之影響性 142
4.7.1無機聚合物殘留鉀離子之分析 142
4.7.2合成後之碳化矽粉體分析 143
4.7.3除碳後之碳化矽粉體分析 144
4.7.4純化後之碳化矽粉體分析 145
4.7.4.1 XRD晶相分析 145
4.7.4.2 FE-SEM微觀結構分析 146
4.7.4.3 TEM微觀結構分析 147
4.7.5小結 149
第五章 結論與建議 150
5.1結論 150
5.2建議 151
參考文獻 152
附錄 161

吳冠龍,2008,以變高嶺石製成無機聚合樹脂應用於混凝土裂縫修補之研究,碩士論文,國立臺北科技大學資源工程研究所碩士班,臺北。
吳政育,2015,以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究,碩士論文,國立中央大學環境工程研究所,桃園。
巫定洲,2018,利用再生稻殼一步合成矽/碳化矽/碳複合材料應用於鋰離子電池負極研究,碩士論文,國立清華大學材料科學工程學系,新竹。
李文鴻,2001,電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長研究,博士論文,國立臺灣科技大學化學工程系,臺北。
材料世界網,2002,碳化矽材料於功率元件之應用,
https://www.materialsnet.com.tw/DocView.aspx?id=1369。
材料世界網,2022,碳化矽晶體材料技術發展,
https://www.materialsnet.com.tw/edm/ePaperNewest.aspx?id=11066。
汪建民,1994,陶瓷技術手冊(上),粉末冶金協會出版,新竹。
林凱隆、羅康維、鄭大偉、許皓翔,2020,無機聚合物製成防火材料之應用,土木水利第四十七卷 第二期,21-25 頁。
林博文,1994,陶瓷技術手冊(下),粉末冶金協會出版,新竹。
施千琳,2015,以無機聚合技術製備低溫陶質磁磚之研究,碩士論文,國立臺北科技大學資源工程研究所,臺北。
柯翰勝,2011,低二氧化碳排放的無機聚合綠色水泥開發研究,碩士論文,國立臺北科技大學資源工程研究所,臺北。
莊凱翔,2022,化合物半導體碳化矽粉體材料技術探討,工業材料雜誌,425期,第42-52頁。
許仲瑋,2004,蛇紋石廢料合成碳化矽之研究,碩士論文,國立臺北科技大學材料及資源工程系碩士班,臺北。
許欣怡,2007,(100)矽基材上立方晶碳化矽層對方向性鑽石形成之影響,碩士論文,國立交通大學材料科學與工程系所,新竹。
許致瑋,2014,晶圓切割廢棄物資源化之研究,碩士論文,國立臺北科技大學資源工程研究所,臺北。
陳純森,2023,第1404期-循環經濟˙材料再利用-矽灰,技師報- 台灣省土木技師公會。http://etimes.twce.org.tw
極光應用材料有限公司,2020,氧化物玻璃粉製造方式簡介,https://auroraapp.com.tw/2020/09/25
董法揆,2005,雷射誘發經過裂解的乙稀以化學氣相層積法成長碳化矽與氧化鎢合成物之拉曼光譜研究,碩士論文,國立東華大學應用物理研究所,花蓮。
廖品熏,2023,利用無機聚合技術調適合成白榴石陶瓷製程之研究,碩士論文,國立臺北科技大學材料及資源工程系碩士班,臺北。
劉全璞、李奕錩,2022,第三代半導體—碳化矽材料之製程與分析,EETimes Taiwan(EETT電子報)。https://www.eettaiwan.com/2220718ta41-ma-tek-sic/
戴詩潔,2005,高嶺石鋁矽酸鹽聚合材料,碩士論文,國立臺北科技大學材料及資源工程系碩士班,臺北。
薛瑞芳,2013,釉藥學,藝術家出版,臺北。
An Z., Xue J., Cao H., Zhu C., Wang, H., 2019, A facile synthesis of silicon carbide nanoparticles with high specific surface area by using corn cob, Advanced Powder Technology, 30(1), pp. 164-169.
Bagci C., Kutyla G. P., Seymour K. C., Kriven W. M., 2016, Synthesis and characterization of silicon carbide powders converted from metakaolin‐based geopolymer, Journal of the American Ceramic Society, 99(7), pp. 2521-2530.
Bakharev T., 2005, Resistance of geopolymer materials to acid attack, geopolymers, Cement and Concrete Research, 35(4), pp. 658-670.
Bezerra B. P., Luz, A. P. , 2024, High-alumina refractory castables bonded with metakaolin-based geopolymers prepared with different alkaline liquid reagents, Ceramics International, 50, pp.18628-18637.
Brinker C. J., Scherer, G. W., 2013, Sol-gel science: the physics and chemistry of sol-gel processing, Academic press, USA.
Chen X., Zhu G.R., Wang J., Chen Q., 2018, Effect of polyacrylic resin on mechanical properties of granulated blast furnace slag based geopolymer, Journal of Non-Crystalline Solids, 481, pp.4-9.
Davidovits J., 1976, Solid phase synthesis of mineral block composite by low temperature polycondensation of alumino-silicate polymers, IUPAC Macromolecular Symposium, St℃kholm, Sweden, pp.3-15.
Davidovits J., 1994, Geopolymer: man-maderck geosynthesis and the resulting development of very early high strength cement, Journal of materials Education, 16, pp. 91-139.
Davidovits J., 1999, Chemistry of Geopolymeric Systems Terminology, Proceeding of Geopolymer, 99 Second International Conference, France, pp. 9-37.
Davidovits J., 2015, False values on CO2 emission for geopolymer cement/concrete published in scientific papers, Technical paper, 24, pp. 1-9.
Duxson P., Provis J.L., 2008, Designing Precursors for Geopolymer Cements, Journal of the american ceramic society, 91(12), pp. 3864-3869.
Galuska A.A., Uht, J.C.; Marquez, N, 1988, Reactive and nonreactive ion mixing of Ti films on carbon substrates, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6(1), pp.110-122.
Hajimohammadi A., Provis J. L., Van Deventer J. S. J., 2008, “One-Part geopolymer mixes from geothermal silica and sodium aluminate”, Industrial and Engineering Chemistry Research, 47, pp. 9396-9405.
Hajimohammadi A., Provis J.L., Van Deventer J.S.J., 2010, Effect of alumina release rate on the mechanism of geopolymer gel formation, Chemistry of Materials, 22, pp.5199–5208.
He P., Jia D., Wang S., 2013, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor, Journal of the European Ceramic Society, 33, pp. 689-698.
Hecini M., Beddek S., Tablaoui M., Ayoucha Y., Palahouane B., Khelifa A., Aoudj S., Drouiche N. 2022, Silicon Carbide Recovery from Cutting Fluid Waste: Evolution of Recycling Performance for Valorization with Higher Added Value, Silicon, 14, pp.3857-3869.
Hemati S., Rumana Hossain, Veena Sahajwalla, 2022, Selective Thermal Transformation of Automotive Shredder Residues into High-Value Nano Silicon Carbide, Nanomaterials, 11, pp. 2781
Hsieh Y.C., Lee W.H, Liao P.H., 2021, Using Geopolymer Technology on Synthesizing Leucite Ceramics, Polymers, 13, pp. 3621.
Huang C. N., Lee J. Y., Wang C.C., 2022, On the 2H-to 3C-Type Transformation and Growth Mechanism of SiC Nanowires upon Carbothermal Reduction of Rice Straws. ACS omega, 7(6), pp. 5039-5052.
Huseynov E. M., Naghiyev, T. G., (2021), Study of thermal parameters of nanocrystalline silicon carbide (3C-SiC) using DSC spectroscopy. Applied Physics A, 127(4), pp. 267.
Iwata H. P., Lindefelt U., Öberg S., Briddon P. R., (2003), Stacking faults in silicon carbide., Physica B: Condensed Matter, 340, pp. 165-170.
Jayakumari S., Tangstad M., 2020, Transformation of b-SiC from Charcoal, Coal, and Petroleum Coke to a-SiC at Higher Temperatures, Metallurgical and Materials Transactions B, 51, pp.2673-2688.

Jia D., He P., Wang M., Yan S., 2020, Short SiC Fiber and Hybrid SiC/Carbon Fiber Reinforced Geopolymer Matrix Composites, Geopolymer and Geopolymer Matrix Composites, pp. 243-270.
Jia D., Li Y., He P., Fu S., Duan X., Sun Z., Cai D., Li Z., Yang Z., Zhou Y., 2019. In-situ formation of bulk and porous h-AlN/SiC-based ceramics from geopolymer technique. Ceramics International, 45, pp. 24727-24733.
Kaur A., P. Chahal, and T. Hogan, 2016, Selective Fabrication of SiC/Si Diodes by Excimer Laser Under Ambient Conditions, IEEE Electron Device Letters, 37(2), pp. 142-145
Kavecký Š., Janeková B., Madejová J., Šajgalı́k P., 2000, Silicon carbide powder synthesis by chemical vapour deposition from silane/acetylene reaction system, Journal of the European Ceramic Society, 20(12), pp. 1939-1946.
Kevorkijan V. M., M. Koman, and D. Kolar, 1992, Low-Temperature Synthesis of Sinterable SiC Powders by Carbothermic Reduction of Colloidal SiO2, Journal of Materials Science, 27, pp. 2705–12.
Kim G.D., Kim, Y.W., Song, I.H., Kim, K.J. 2020, Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics, Ceramics International, Part A, 46, pp. 15594-15603.
Kimoto, T., & Cooper, J. A., 2014, Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons.
Kirish KS, Vlasov PP, Dmitrevskii BA., 2020, Production of Potassium Phosphate by a Conversion Method. Fibre Chemistry, 52(3), pp. 148-153.
Lee K. H., Seung-Koo Lee a, Ki-Seok Jeon, 2009, Photoluminescent properties of silicon carbide and porous silicon carbide after annealing, Applied Surface Science, 255, pp. 4414-4420.
Lee W.H, Hsieh Y.C., Wang H.W., Ding Y.C., Cheng T.W., 2021, Fabrication of Low-Temperature Sintering Building Bricks Using Drilling Cutting and Geopolymeric Technology, Materials, 14, pp. 5940.
Lehmann T., Baier J., Leineweber A., Kienzle A., Bill, J., 2015, Influence of the Carbon Content on the Crystallization and Oxidation Behavior of Polymer‐Derived Silicon Carbide (SiC). Advanced Engineering Materials, 17(11), pp. 1631-1638.
Liew Y.M., Heah C.Y., Mohd Mustafa A.B., Kamarudin H., 2016, Structure and properties of clay-based geopolymer cements: A review, Progress in Materials Science, 83, pp. 595-629.
Luo, X., Goel, S., Reuben, R.L. 2012, A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide, Journal of the European Ceramic Society, 32, pp. 3423-3434.
Ma R., Jiahui Shi , Wenxin Lin , Jianjun Chen, 2020, Synthesis and sintering of nanocrystalline SiC ceramic powders, Materials Chemistry and Physics, 253, pp. 123445.
Mahdavinejad R., Tolouei-Rad, M., Sharifi-Bidgoli, H. 2005, Heat transfer analysis of EDM process on silicon carbide, International Journal of Numerical Methods for Heat and Fluid Flow, 15, pp. 483-502.
Mizokawa Y., Geib K. M., & Wilmsen, C. W., 1986, Characterization of β‐SiC surfaces and the Au/SiC interface, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(3), pp. 1696-1700.
Ng Y.S., Liew Y.M., Heah C.Y., Abdullah M.M.A.B, Rojviriya C., Khalid M.S., Ong S.W., Ooi W.E., 2023, Interaction of silica fume on flexural properties of 10 mm-thickness geopolymers based on fly ash and ladle furnace slag under the thermal conditions, Journal of Building Engineering, 69, pp. 106331.
Nguyen V. V., Le, V. S., Louda, P., Szczypiński, M. M., Ercoli, R., Růžek, V., Piotr Łoś 1, Karol Prałat, Przemysław Plaskota, Tadeusz Pacyniak & Buczkowska, K. E., 2022, Low-density geopolymer composites for the construction industry. Polymers, 14(2), pp. 304.
Okoye F.N., Durgaprasad J., Singh N.B., 2016, Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete, 42(2), pp. 3000-3006.
Omidi Z., Ghasemi, A., & Bakhshi, S. R., 2015, Synthesis and characterization of SiC ultrafine particles by means of sol-gel and carbothermal reduction methods, Ceramics International, 41(4), pp. 5779-5784
Prusty J.K, Pradhan B., 2022, Investigation on effect of precursor materials and sand-to-binder ratio on strength development, acid resistance and microstructure evolution of geopolymer mortar, Construction and Building Materials, 346, pp. 128501,
Rajarao R., Ferreira R., Sadi S. H. F., Khanna R., Sahajwalla V., 2014, Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source, Materials Letters, 120, pp. 65-68.
Rashad A. M., 2019, Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars, Proceedings of the Institution of Civil Engineers-Construction Materials, 172(1), pp. 37-44.
Rob Phillips, 2001, Crystals, Defects and Microstructures: Modeling Across Scales, Cambridge University Press, U.K. .
Schmücker M., Mackenzie K. J. D., 2005, “Microstructure of sodium polysialate siloxo geopolymer, Ceramics International, 31, pp. 433–437.
See A., Hassan, J., Hashim, M., Wahab, Z. A., Halim, D. N. F. A., Abdullah, M. S., & Azis, R. A. S., 2016, Dielectric behavior of β-SiC nanopowders in air between 30 and 400°C, Journal of Materials Science: Materials in Electronics, 27, pp. 6623-6629.
Silicon Carbide Market, 2024, Market Research Report.
Slavik R., Bednarik V., Vondruska M., Skoba O., Hanzlicek T., 2005, World Congress, French, pp. 17-19.
Soe P. S., Sornlar, W., Wannagon, A., & Chaysuwan, D., 2023, Mechanical and thermal properties of bottom ash-based porous geopolymer as thermal insulation material for construction, Journal of Material Cycles and Waste Management, 25(5), pp. 2964-2975.
Tanaka H., Yamamoto A., Shimoyama J-I., 2012, Strongly connected ex situ MgB2 polycrystalline bulks fabricated by solid-state self-sintering, Supercond. Science and Technology, 25, pp. 115022-115029.
Thulasiraman A. V., Ganesapillai M., 2023, A systematic review on the synthesis of silicon carbide: an alternative approach to valorisation of residual municipal solid waste, Processes, 11(1), pp. 283.
Timofeeva E. V., Smith D. S., Yu W., France D. M., Singh D., Routbort J. L., 2010, Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids, Nanotechnology, 21(21), pp. 215703.
Tomar A. S., Gupta R., Singh A., Salammal S. T., Khan M. A., Mishra D., 2022, Evaluation of corrosion protective properties of fly ash-red mud based geopolymer coating material for mild steel, Materials Today: Proceedings, 68, pp.181-186.
U. S. Geological Survey(USGS),1962,KAOLINITE GROUP https://pubs.usgs.gov/of/2001/of01-041/htmldocs/clays/kaogr.htm
Wang K., Lemougna P.N., Tang Q., Li W., He Y., Cui X., 2017, Low temperature depolymerization and polycondensation of a slag-based inorganic polymer, Ceramics International, 43, pp.9067-9076.
Wang Y., Han F., Mu J., 2018, Solidification/stabilization mechanism of Pb (II), Cd (II), Mn (II) and Cr (III) in fly ash based geopolymers, Construction and Building Materials, 160, pp. 818-827.
Wu C., Gao T., Nie J., Liu X., 2020, Synthesis and Growth of 6H-SiC and 3C-SiC in an Al–Si–C System at 820°C: Effect of the Reaction Path on the SiC Polytype, Crystal Growth & Design, 20(2), pp. 1070-1078.
Xie N, Bell J.L., Kriven W.M., 2010, Fabrication of Structural Leucite Glass–Ceramics from Potassium-Based Geopolymer Precursors, Journal of the American Ceramic Society, 93, pp. 2644-2649.
Yan L., Kasal B., Huang L., 2016, A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering, Composite Part B, 92, pp. 94-132.
Yang K.H., Song J.K., Lee J.S., 2010, Properties of alkali-activated mortar and concrete using lightweight aggregates, Materials and Structures, 43, pp.403–416.
Yang N., Das, C. S., Xue, X., Li, W., Dai, J. G., 2022, Geopolymer coating modified with reduced graphene oxide for improving steel corrosion resistance.Construction and Building Materials, 342, pp. 127942.
Youm M. R., Yun S. I., Choi S. C., Park S. W., 2020, Synthesis of β-SiC powders by the carbothermal reduction of porous SiO2–C hybrid precursors with controlled surface area, Ceramics International, 46(4), pp. 4870-4877.
Zhang F., Chen Y., Wei S., Si Y., Wang H., Zhang R., Fan, B, 2022, Microwave heating and mechanism for seed-induced synthesis of SiC, Materials Today Communications, 31, pp. 103846.
Zhong Y., Shaw L. L., Manjarres M., Zawrah M. F., 2010, Synthesis of silicon carbide nanopowder using silica fume, Journal of the American Ceramic Society, 93(10), pp. 3159-3167.

電子全文 電子全文(網際網路公開日期:20290723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊