|
(1) Song, Y.; Hormes, J.; Kumar, C. S. Microfluidic synthesis of nanomaterials. small 2008, 4 (6), 698-711. (2) Pinho, B.; Zhang, K.; Hoye, R. L.; Torrente‐Murciano, L. Importance of Monitoring the Synthesis of Light‐Interacting Nanoparticles–A Review on In Situ, Ex Situ, and Online Time‐Resolved Studies. Advanced Optical Materials 2022, 10 (14), 2200524. (3) Yao, C.; Dong, Z.; Zhao, Y.; Chen, G. Gas-liquid flow and mass transfer in a microchannel under elevated pressures. Chemical Engineering Science 2015, 123, 137-145. (4) Tao, S.; Yang, M.; Chen, H.; Ren, M.; Chen, G. Microfluidic synthesis of Ag@ Cu2O core-shell nanoparticles with enhanced photocatalytic activity. Journal of Colloid and Interface Science 2017, 486, 16-26. (5) Kuo, C.-H.; Hua, T.-E.; Huang, M. H. Au nanocrystal-directed growth of Au− Cu2O core− shell heterostructures with precise morphological control. Journal of the American Chemical Society 2009, 131 (49), 17871-17878. (6) Xiong, J.; Li, Z.; Chen, J.; Zhang, S.; Wang, L.; Dou, S. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@ Cu2O core–shell heteronanowires. ACS Applied Materials & Interfaces 2014, 6 (18), 15716-15725. (7) Neill, H. Scalable solid state synthesis of core-chell Pt@ Cu2O nanocubes with controlled size and shape. 2021. (8) Li, J.; Zhao, T.; Chen, T.; Liu, Y.; Ong, C. N.; Xie, J. Engineering noble metal nanomaterials for environmental applications. Nanoscale 2015, 7 (17), 7502-7519. (9) Kim, J. E.; Choi, J. H.; Colas, M.; Kim, D. H.; Lee, H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosensors and Bioelectronics 2016, 80, 543-559. (10) Mirzaei, A.; Janghorban, K.; Hashemi, B.; Neri, G. Metal-core@ metal oxide-shell nanomaterials for gas-sensing applications: a review. Journal of Nanoparticle Research 2015, 17, 1-36. (11) Ahmed, S. F.; Khalid, M.; Rashmi, W.; Chan, A.; Shahbaz, K. Recent progress in solar thermal energy storage using nanomaterials. Renewable and Sustainable Energy Reviews 2017, 67, 450-460. (12) Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal 2016, 306, 1116-1137. (13) Sebastian, V. Toward continuous production of high-quality nanomaterials using microfluidics: Nanoengineering the shape, structure and chemical composition. Nanoscale 2022, 14 (12), 4411-4447. (14) Tan, C.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature communications 2015, 6 (1), 7873. (15) Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano letters 2007, 7 (10), 3097-3101. (16) Saldanha, P. L.; Lesnyak, V.; Manna, L. Large scale syntheses of colloidal nanomaterials. Nano Today 2017, 12, 46-63. (17) Sebastian Cabeza, V. Chapter High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches. 2016. (18) Zindani, D.; Kumar, K. Graphene-based polymeric nano-composites: An introspection into functionalization, processing techniques and biomedical applications. Biointerface Res. Appl. Chem 2019, 9, 3926-3933. (19) Hamdallah, S. I.; Zoqlam, R.; Erfle, P.; Blyth, M.; Alkilany, A. M.; Dietzel, A.; Qi, S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. International journal of pharmaceutics 2020, 584, 119408. (20) Niculescu, A.-G.; Chircov, C.; Bîrcă, A. C.; Grumezescu, A. M. Nanomaterials synthesis through microfluidic methods: An updated overview. Nanomaterials 2021, 11 (4), 864. (21) Shrimal, P.; Jadeja, G.; Patel, S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chemical Engineering Research and Design 2020, 153, 728-756. (22) Kim, G.; Song, S.; Lee, J.; Kim, J.-M. Size-controlled fabrication of supramolecular vesicles for the construction of conjugated polymer sensors with enhanced optical properties. Langmuir 2010, 26 (23), 17840-17842. (23) Singh, K. R.; Nayak, V.; Sarkar, T.; Singh, R. P. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC advances 2020, 10 (45), 27194-27214. (24) Mockus, L.; Peterson, J. J.; Lainez, J. M.; Reklaitis, G. V. Batch-to-batch variation: a key component for modeling chemical manufacturing processes. Organic Process Research & Development 2015, 19 (8), 908-914. (25) Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sönnichsen, C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano letters 2007, 7 (9), 2881-2885. (26) Uson, L.; Sebastian, V.; Arruebo, M.; Santamaria, J. Continuous microfluidic synthesis and functionalization of gold nanorods. Chemical Engineering Journal 2016, 285, 286-292. (27) Sebastian, V.; Arruebo, M.; Santamaria, J. Reaction engineering strategies for the production of inorganic nanomaterials. Small 2014, 10 (5), 835-853. (28) Plouffe, P.; Bittel, M.; Sieber, J.; Roberge, D. M.; Macchi, A. On the scale-up of micro-reactors for liquid–liquid reactions. Chemical Engineering Science 2016, 143, 216-225. (29) Wong, W. K.; Yap, S. K.; Lim, Y. C.; Khan, S. A.; Pelletier, F.; Corbos, E. C. Robust, non-fouling liters-per-day flow synthesis of ultra-small catalytically active metal nanoparticles in a single-channel reactor. Reaction Chemistry & Engineering 2017, 2 (5), 636-641. (30) Zhang, L.; Xia, Y. Scaling up the production of colloidal nanocrystals: should we increase or decrease the reaction volume? Advanced materials 2014, 26 (16), 2600-2606. (31) Gomez, L.; Cebrian, V.; Martin-Saavedra, F.; Arruebo, M.; Vilaboa, N.; Santamaria, J. Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization. Materials Research Bulletin 2013, 48 (10), 4051-4057. (32) Mills, P. L.; Quiram, D. J.; Ryley, J. F. Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chemical Engineering Science 2007, 62 (24), 6992-7010. (33) Jensen, K. F. Microreaction engineering—is small better? Chemical Engineering Science 2001, 56 (2), 293-303. (34) Mülhopt, S.; Diabaté, S.; Dilger, M.; Adelhelm, C.; Anderlohr, C.; Bergfeldt, T.; Gómez de la Torre, J.; Jiang, Y.; Valsami-Jones, E.; Langevin, D. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 2018, 8 (5), 311. (35) Aziz, N.; Mujtaba, I. Optimal operation policies in batch reactors. Chemical Engineering Journal 2002, 85 (2-3), 313-325. (36) Roszkowska, P.; Dickenson, A.; Higham, J. E.; Easun, T. L.; Walsh, J.; Slater, A. Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing. Lab on a Chip 2023, 23 (12), 2720-2728. (37) Seifrid, M.; Pollice, R.; Aguilar-Granda, A.; Morgan Chan, Z.; Hotta, K.; Ser, C. T.; Vestfrid, J.; Wu, T. C.; Aspuru-Guzik, A. Autonomous chemical experiments: Challenges and perspectives on establishing a self-driving lab. Accounts of Chemical Research 2022, 55 (17), 2454-2466. (38) Ma, J.; Lee, S. M.-Y.; Yi, C.; Li, C.-W. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications–a review. Lab on a Chip 2017, 17 (2), 209-226. (39) Bilati, U.; Allémann, E.; Doelker, E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. European Journal of Pharmaceutical Sciences 2005, 24 (1), 67-75. (40) Govender, T.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of controlled release 1999, 57 (2), 171-185. (41) Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces 2010, 75 (1), 1-18. (42) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chemical reviews 2005, 105 (4), 1025-1102. (43) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews 2008, 108 (6), 2064-2110. (44) Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol− gel approach. Nano letters 2002, 2 (3), 183-186. (45) Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J. Sol− gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. Journal of the American Chemical Society 2001, 123 (18), 4344-4345. (46) Bang, J. H.; Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials 2010, 22 (10), 1039-1059. (47) Sun, L.; Li, J.; Wang, C.; Li, S.; Lai, Y.; Chen, H.; Lin, C. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials 2009, 171 (1-3), 1045-1050. (48) Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 2001, 17 (10), 2900-2906. (49) Zhao, X.; Bagwe, R. P.; Tan, W. Development of organic‐dye‐doped silica nanoparticles in a reverse microemulsion. Advanced Materials 2004, 16 (2), 173-176. (50) Zarur, A. J.; Ying, J. Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. nature 2000, 403 (6765), 65-67. (51) Lopez-Quintela, M. A. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Current Opinion in Colloid & Interface Science 2003, 8 (2), 137-144. (52) Jana, N. R.; Gearheart, L.; Murphy, C. J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of materials 2001, 13 (7), 2313-2322. (53) Pillai, Z. S.; Kamat, P. V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? The Journal of Physical Chemistry B 2004, 108 (3), 945-951. (54) Lee, Y.; Choi, J.-r.; Lee, K. J.; Stott, N. E.; Kim, D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 2008, 19 (41), 415604. (55) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B 2005, 109 (29), 13857-13870. (56) Wang, H.; Li, X.; Uehara, M.; Yamaguchi, Y.; Nakamura, H.; Miyazaki, M.; Shimizu, H.; Maeda, H. Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chemical communications 2004, (1), 48-49. (57) Chan, E. M.; Alivisatos, A. P.; Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society 2005, 127 (40), 13854-13861. (58) Krishnadasan, S.; Brown, R.; Demello, A.; DeMello, J. Intelligent routes to the controlled synthesis of nanoparticles. Lab on a Chip 2007, 7 (11), 1434-1441. (59) Dai, J.; Yang, X.; Hamon, M.; Kong, L. Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip. Chemical Engineering Journal 2015, 280, 385-390. (60) Lignos, I.; Stavrakis, S.; Kilaj, A.; deMello, A. J. Millisecond‐timescale monitoring of PbS nanoparticle nucleation and growth using droplet‐based microfluidics. Small 2015, 11 (32), 4009-4017. (61) Dai, J.; Yang, X.; Hamon, M.; Kong, L.; Lee, W. S.; Park, S.; Hong, J. W. Corrigendum to “Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip”[Chem. Eng. J. 280 (2015) 385–390]. Chemical Engineering Journal 2016, 286, 347. (62) Watt, J.; Hance, B. G.; Anderson, R. S.; Huber, D. L. Effect of seed age on gold nanorod formation: a microfluidic, real-time investigation. Chemistry of Materials 2015, 27 (18), 6442-6449. (63) Fu, Q.; Sheng, Y.; Tang, H.; Zhu, Z.; Ruan, M.; Xu, W.; Zhu, Y.; Tang, Z. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS nano 2015, 9 (1), 172-179. (64) Zhang, L.; Niu, G.; Lu, N.; Wang, J.; Tong, L.; Wang, L.; Kim, M. J.; Xia, Y. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano letters 2014, 14 (11), 6626-6631. (65) Angly, J.; Iazzolino, A.; Salmon, J.-B.; Leng, J.; Chandran, S. P.; Ponsinet, V.; Désert, A.; Le Beulze, A.; Mornet, S.; Tréguer-Delapierre, M. Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles. ACS nano 2013, 7 (8), 6465-6477. (66) Wagner, J.; Köhler, J. Continuous synthesis of gold nanoparticles in a microreactor. Nano letters 2005, 5 (4), 685-691. (67) Marre, S.; Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chemical Society Reviews 2010, 39 (3), 1183-1202. (68) Krishna, K. S.; Li, Y.; Li, S.; Kumar, C. S. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Advanced drug delivery reviews 2013, 65 (11-12), 1470-1495. (69) Abou‐Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in inorganic chemistry. Angewandte Chemie International Edition 2010, 49 (36), 6268-6286. (70) Saleh, T. A. Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation 2020, 20, 101067. (71) Aljuhani, E.; Al-Ahmed, Z. A. Evaluation of the physical parameters of nano-sized tetrachlorosilane as an inorganic material a mixed solvent using Fuoss-Shedlovsky and Fuoss-Hsia-Fernandez-Prini techniques. Biointerface Research in Applied Chemistry 2020, 10 (4), 5741-5746. (72) Ejtemaee, P.; Khamehchi, E. Experimental investigation of rheological properties and formation damage of water-based drilling fluids in the presence of Al2O3, Fe3O4, and TiO2 nanoparticles. Biointerface Res. Appl. Chem 2020, 10, 5886-5894. (73) Bally, F.; Serra, C. A.; Hessel, V.; Hadziioannou, G. Micromixer-assisted polymerization processes. Chemical Engineering Science 2011, 66 (7), 1449-1462. (74) Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab on a Chip 2018, 18 (16), 2323-2347. (75) Pan, L.-J.; Tu, J.-W.; Ma, H.-T.; Yang, Y.-J.; Tian, Z.-Q.; Pang, D.-W.; Zhang, Z.-L. Controllable synthesis of nanocrystals in droplet reactors. Lab on a Chip 2018, 18 (1), 41-56. (76) Hwang, J.; Cho, Y. H.; Park, M. S.; Kim, B. H. Microchannel fabrication on glass materials for microfluidic devices. International Journal of Precision Engineering and Manufacturing 2019, 20, 479-495. (77) Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nano-enabled medical applications 2020, 93-112. (78) Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. Sticker microfluidics: a method for fabrication of customized monolithic microfluidics. ACS Biomaterials Science & Engineering 2019, 5 (12), 6801-6810. (79) Jain, V.; Patel, V. B.; Singh, B.; Varade, D. Microfluidic device based molecular self-assembly structures. Journal of Molecular Liquids 2022, 362, 119760. (80) Yahyazadeh Shourabi, A.; Salajeghe, R.; Barisam, M.; Kashaninejad, N. A Proof-of-Concept Study Using Numerical Simulations of an Acoustic Spheroid-on-a-Chip Platform for Improving 3D Cell Culture. Sensors 2021, 21 (16), 5529. (81) Niculescu, A.-G.; Chircov, C.; Bîrcă, A. C.; Grumezescu, A. M. Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences 2021, 22 (4), 2011. (82) Özkayar, G.; Mutlu, E.; Şahin, Ş.; Demircan Yalçın, Y.; Töral, T.; Külah, H.; Yildirim, E.; Zorlu, Ö.; Özgür, E. A novel microfluidic method utilizing a hydrofoil structure to improve circulating tumor cell enrichment: Design and analytical validation. Micromachines 2020, 11 (11), 981. (83) Hunt, M.; Taverne, M.; Askey, J.; May, A.; Van Den Berg, A.; Ho, Y.-L. D.; Rarity, J.; Ladak, S. Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 2020, 13 (3), 761. (84) Convery, N.; Gadegaard, N. 30 years of microfluidics. Micro and Nano Engineering 2019, 2, 76-91. (85) Gale, B. K.; Jafek, A. R.; Lambert, C. J.; Goenner, B. L.; Moghimifam, H.; Nze, U. C.; Kamarapu, S. K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 2018, 3 (3), 60. (86) He, Y.; Wu, Y.; Fu, J. z.; Gao, Q.; Qiu, J. j. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 2016, 28 (8), 1658-1678. (87) Zhang, D.; Bi, H.; Liu, B.; Qiao, L. Detection of pathogenic microorganisms by microfluidics based analytical methods. Analytical chemistry 2018, 90 (9), 5512-5520. (88) Yu, B.; Lee, R. J.; Lee, L. J. Microfluidic methods for production of liposomes. Methods in enzymology 2009, 465, 129-141. (89) Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—a review on passive and active mixing principles. Chemical engineering science 2005, 60 (8-9), 2479-2501. (90) Zhao, C.-X.; He, L.; Qiao, S. Z.; Middelberg, A. P. Nanoparticle synthesis in microreactors. Chemical Engineering Science 2011, 66 (7), 1463-1479. (91) Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O. C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano letters 2008, 8 (9), 2906-2912. (92) Rhee, M.; Valencia, P. M.; Rodriguez, M. I.; Langer, R.; Farokhzad, O. C.; Karnik, R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Advanced materials (Deerfield Beach, Fla.) 2011, 23 (12), H79. (93) Lin, X. Z.; Terepka, A. D.; Yang, H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano letters 2004, 4 (11), 2227-2232. (94) Cheng, Y.; Da Ling, S.; Geng, Y.; Wang, Y.; Xu, J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances 2021, 3 (8), 2180-2195. (95) Baret, J.-C. Surfactants in droplet-based microfluidics. Lab on a Chip 2012, 12 (3), 422-433. (96) Niu, G.; Ruditskiy, A.; Vara, M.; Xia, Y. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chemical Society Reviews 2015, 44 (16), 5806-5820. (97) Duraiswamy, S.; Khan, S. A. Droplet‐based microfluidic synthesis of anisotropic metal nanocrystals. small 2009, 5 (24), 2828-2834. (98) Yen, B. K.; Günther, A.; Schmidt, M. A.; Jensen, K. F.; Bawendi, M. G. A microfabricated gas–liquid segmented flow reactor for high‐temperature synthesis: the case of CdSe quantum dots. Angewandte Chemie 2005, 117 (34), 5583-5587. (99) Günther, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M. A.; Jensen, K. F. Micromixing of miscible liquids in segmented gas− liquid flow. Langmuir 2005, 21 (4), 1547-1555. (100) Yu, Z.; Hemminger, O.; Fan, L.-S. Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels. Chemical Engineering Science 2007, 62 (24), 7172-7183. (101) Wang, J.; Song, Y. Microfluidic synthesis of nanohybrids. Small 2017, 13 (18), 1604084. (102) Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Accounts of chemical research 2013, 46 (11), 2396-2406. (103) Martins, J. P.; Torrieri, G.; Santos, H. A. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert opinion on drug delivery 2018, 15 (5), 469-479. (104) Singh, A.; Malek, C. K.; Kulkarni, S. K. Development in microreactor technology for nanoparticle synthesis. International Journal of Nanoscience 2010, 9 (01n02), 93-112. (105) Campbell, S. B.; Wu, Q.; Yazbeck, J.; Liu, C.; Okhovatian, S.; Radisic, M. Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS biomaterials science & engineering 2020, 7 (7), 2880-2899. (106) Kotz, F.; Mader, M.; Dellen, N.; Risch, P.; Kick, A.; Helmer, D.; Rapp, B. E. Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 2020, 11 (9), 873. (107) Mofazzal Jahromi, M. A.; Abdoli, A.; Rahmanian, M.; Bardania, H.; Bayandori, M.; Moosavi Basri, S. M.; Kalbasi, A.; Aref, A. R.; Karimi, M.; Hamblin, M. R. Microfluidic brain-on-a-chip: perspectives for mimicking neural system disorders. Molecular neurobiology 2019, 56, 8489-8512. (108) Zhang, Y.; Liu, J.; Wang, H.; Fan, Y. Laser-induced selective wax reflow for paper-based microfluidics. RSC advances 2019, 9 (20), 11460-11464. (109) Soum, V.; Park, S.; Brilian, A. I.; Kwon, O.-S.; Shin, K. Programmable paper-based microfluidic devices for biomarker detections. Micromachines 2019, 10 (8), 516. (110) Schaumburg, F.; Berli, C. L. Assessing the rapid flow in multilayer paper-based microfluidic devices. Microfluidics and Nanofluidics 2019, 23 (8), 98. (111) Damiati, S.; Kompella, U. B.; Damiati, S. A.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes 2018, 9 (2), 103. (112) Streets, A. M.; Huang, Y. Microfluidics for biological measurements with single-molecule resolution. Current opinion in biotechnology 2014, 25, 69-77. (113) Yaralioglu, G. G.; Wygant, I. O.; Marentis, T. C.; Khuri-Yakub, B. T. Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical chemistry 2004, 76 (13), 3694-3698. (114) Pitoteach CO. Perform Multiphysics Simulations of Microfluidic Devices. Fluid heat transfer field, 2012. https://www.pitotech.com.tw/contents/zh-tw/p10037_Microfluidics-Module.html (accessed 2024 April 21). (115) Salih, N. M.; Hashim, U.; Nayan, N.; Soon, C. F.; Sahdan, M. Z. Numerical simulation of water flow velocity for microfluidic application using COMSOL multiphysics. Advanced Materials Research 2014, 925, 651-655. (116) Multiphysics, C. Track Charged Particles and Particles in Fluid Flow. https://www.comsol.com/particle-tracing-module (accessed 2024 April 21). (117) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38. (118) Zhang, F.; Dong, G.; Wang, M.; Zeng, Y.; Wang, C. Efficient removal of methyl orange using Cu2O as a dual function catalyst. Applied Surface Science 2018, 444, 559-568. (119) Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chemical reviews 2012, 112 (3), 1555-1614. (120) Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental science & technology 1998, 32 (5), 726-728. (121) Zangeneh, H.; Zinatizadeh, A.; Habibi, M.; Akia, M.; Isa, M. H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry 2015, 26, 1-36. (122) Qin, J.; Huo, J.; Zhang, P.; Zeng, J.; Wang, T.; Zeng, H. Improving the photocatalytic hydrogen production of Ag/gC 3 N 4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 2016, 8 (4), 2249-2259. (123) Kotz, J. C.; Treichel, P.; Townsend, J. R.; Treichel, D. A. Chemistry & chemical reactivity; Thomson Brooks/Cole Belmont, CA, USA:, 2006. (124) National Science Council Center for Green Chemistry. Homogeneous Catalysis. 2024, 2008. (accessed April 20. (125) Minhong, L. Catalyst skills. scientific development, 2002. (accessed 2024 April 20). (126) Groeneveld, I.; Kanelli, M.; Ariese, F.; van Bommel, M. R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate–An overview. Dyes and Pigments 2023, 210, 110999. (127) Jamal, M. A.; Muneer, M.; Iqbal, M. Photo-degradation of monoazo dye blue 13 using advanced oxidation process. Chem. Int 2015, 1 (1), 12-16. (128) Karlsson, J. K.; Woodford, O. J.; Al-Aqar, R.; Harriman, A. Effects of temperature and concentration on the rate of photobleaching of Erythrosine in water. The Journal of Physical Chemistry A 2017, 121 (45), 8569-8576. (129) Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Materials Science in Semiconductor Processing 2015, 39, 265-275. (130) Chiu, Y.-H.; Chang, T.-F. M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9 (5), 430. (131) Saggioro, E. M.; Oliveira, A. S.; Pavesi, T.; Maia, C. G.; Ferreira, L. F. V.; Moreira, J. C. Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 2011, 16 (12), 10370-10386. (132) Khalid Saeed, K. S.; Idrees Khan, I. K.; Tamanna Gul, T. G.; Mohammad Sadiq, M. S. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. 2017. (133) Naushad, M.; Sharma, G.; Alothman, Z. A. Photodegradation of toxic dye using Gum Arabic-crosslinked-poly (acrylamide)/Ni (OH) 2/FeOOH nanocomposites hydrogel. Journal of Cleaner Production 2019, 241, 118263. (134) Paul, D. R.; Sharma, R.; Nehra, S.; Sharma, A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC advances 2019, 9 (27), 15381-15391. (135) Herrmann, J.-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis today 1999, 53 (1), 115-129. (136) Reza, K. M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO 2: a review. Applied Water Science 2017, 7, 1569-1578. (137) Jiang, H.-Y.; Hu, X.-D.; Zhu, J.-J.; Wan, J.; Yao, J.-B. Studies on the photofading of alizarin, the main component of madder. Dyes and Pigments 2021, 185, 108940. (138) Minamoto, C.; Fujiwara, N.; Shigekawa, Y.; Tada, K.; Yano, J.; Yokoyama, T.; Minamoto, Y.; Nakayama, S. Effect of acidic conditions on decomposition of methylene blue in aqueous solution by air microbubbles. Chemosphere 2021, 263, 128141. (139) Shi, X.; Ji, Y.; Hou, S.; Liu, W.; Zhang, H.; Wen, T.; Yan, J.; Song, M.; Hu, Z.; Wu, X. Plasmon enhancement effect in Au gold nanorods@ Cu2O core–shell nanostructures and their use in probing defect states. Langmuir 2015, 31 (4), 1537-1546. (140) Zhu, J.; Lu, N.; Chen, W.; Kong, L.; Yang, Y.; Ma, D.; Huang, S. Influence of Au nanoparticle shape on Au@ Cu2O heterostructures. Journal of Nanomaterials 2015, 16 (1), 211-211. (141) Zhou, D.-L.; Feng, J.-J.; Cai, L.-Y.; Fang, Q.-X.; Chen, J.-R.; Wang, A.-J. Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochimica Acta 2014, 115, 103-108. (142) Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. One‐pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Advanced Materials 2005, 17 (21), 2562-2567. (143) Kuo, C. H.; Chen, C. H.; Huang, M. H. Seed‐mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Advanced Functional Materials 2007, 17 (18), 3773-3780. (144) Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 2005, 21 (3), 1074-1079. (145) Yang, H.; Xie, J.; juan Bao, S.; Li, C. M. Tailoring Co (OH) 2 hollow nanostructures via Cu2O template etching for high performance supercapacitors. Journal of colloid and interface science 2015, 457, 212-217. (146) Chai, F.; Li, K.; Song, C.; Guo, X. Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition. Journal of colloid and interface science 2016, 475, 119-125. (147) Wu, X.; Cai, J.; Li, S.; Zheng, F.; Lai, Z.; Zhu, L.; Chen, T. Au@ Cu2O stellated polytope with core–shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes. Journal of colloid and interface science 2016, 469, 138-146. (148) Sharma, S.; Basu, S. Construction of an efficient and durable hierarchical porous CuO/SiO2 monolith for synergistically boosting the visible-light-driven degradation of organic pollutants. Separation and Purification Technology 2021, 279, 119759. (149) Kamranifar, M.; Al-Musawi, T. J.; Amarzadeh, M.; Hosseinzadeh, A.; Nasseh, N.; Qutob, M.; Arghavan, F. S. Quick adsorption followed by lengthy photodegradation using FeNi3@ SiO2@ ZnO: A promising method for complete removal of penicillin G from wastewater. Journal of Water Process Engineering 2021, 40, 101940. (150) Kuo, C.-H.; Huang, M. H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. The Journal of Physical Chemistry C 2008, 112 (47), 18355-18360. (151) Du, Q.; Tan, J.; Wang, Q.; Li, C.; Liu, X.; Cai, R.; Ding, Y.; Wang, Y. Electrochemical deposition and formation mechanism of single-crystalline Cu2O octahedra on aluminum. Journal of Analytical Methods in Chemistry 2012, 2012. (152) Fang, M.-J.; Lin, Y.-C.; Jan, J.-Y.; Lai, T.-H.; Hsieh, P.-Y.; Kuo, M.-Y.; Chiu, Y.-H.; Tsao, C.-W.; Chen, Y.-A.; Wang, Y.-T. Au@ Cu2O core@ shell nanocrystals as sustainable catalysts for efficient hydrogen production from ammonia borane. Applied Catalysis B: Environmental 2023, 324, 122198. (153) Zhang, Z.; You, R.; Huang, W. Cu2O nanocrystal model catalysts. Chinese Journal of Chemistry 2022, 40 (7), 846-855. (154) Kusior, A.; Synowiec, M.; Zakrzewska, K.; Radecka, M. Surface-controlled photocatalysis and chemical sensing of TiO2, α-Fe2O3, and Cu2O nanocrystals. Crystals 2019, 9 (3), 163. (155) Hou, X.; Huang, X.; Ai, Z.; Zhao, J.; Zhang, L. Ascorbic acid/Fe@ Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants. Journal of hazardous materials 2016, 310, 170-178. (156) Mohamed, H. O.; Obaid, M.; Poo, K.-M.; Abdelkareem, M. A.; Talas, S. A.; Fadali, O. A.; Kim, H. Y.; Chae, K.-J. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chemical Engineering Journal 2018, 349, 800-807. (157) Zhang, L.; Blom, D. A.; Wang, H. Au–Cu2O core–shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chemistry of Materials 2011, 23 (20), 4587-4598. (158) Li, D.; Wang, Z. L.; Wang, Z. Phase separation prior to alloying observed in vacuum heating of hybrid Au/Cu2O core–shell nanoparticles. The Journal of Physical Chemistry C 2017, 121 (2), 1387-1392. (159) Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Platonic gold nanocrystals. Angewandte Chemie International Edition 2004, 43 (28), 3673-3677. (160) Zhang, Q.; Xie, J.; Yu, Y.; Yang, J.; Lee, J. Y. Tuning the crystallinity of Au nanoparticles. Small 2010, 6 (4), 523-527. (161) Zheng, Y.; Liu, W.; Lv, T.; Luo, M.; Hu, H.; Lu, P.; Choi, S. I.; Zhang, C.; Tao, J.; Zhu, Y. Seed‐mediated synthesis of gold tetrahedra in high purity and with tunable, well‐controlled sizes. Chemistry–An Asian Journal 2014, 9 (9), 2635-2640. (162) Park, J.-E.; Lee, Y.; Nam, J.-M. Precisely shaped, uniformly formed gold nanocubes with ultrahigh reproducibility in single-particle scattering and surface-enhanced Raman scattering. Nano letters 2018, 18 (10), 6475-6482. (163) Xu, S.-L.; Shen, S.-C.; Wei, Z.-Y.; Zhao, S.; Zuo, L.-J.; Chen, M.-X.; Wang, L.; Ding, Y.-W.; Chen, P.; Chu, S.-Q. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research 2020, 13, 2735-2740. (164) Zhang, Y.-H.; Liu, M.-M.; Chen, J.-L.; Fang, S.-M.; Zhou, P.-P. Recent advances in Cu 2 O-based composites for photocatalysis: a review. Dalton Transactions 2021, 50 (12), 4091-4111. (165) Zhang, G.; Ma, Y.; Liu, F.; Tong, Z.; Sha, J.; Zhao, W.; Liu, M.; Zheng, Y. Seeded growth of Au@ CuxO core–shell mesoporous nanospheres and their photocatalytic properties. Frontiers in Chemistry 2021, 9, 671220. (166) Zeng, J.; Zhu, C.; Tao, J.; Jin, M.; Zhang, H.; Li, Z. Y.; Zhu, Y.; Xia, Y. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angewandte Chemie 2012, 124 (10), 2404-2408. (167) Smith, D. K.; Korgel, B. A. The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods. Langmuir 2008, 24 (3), 644-649. DOI: 10.1021/la703625a.
|