跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家慈
研究生(外文):HSU, CHIA-TZU
論文名稱:微流體合成金/氧化亞銅核殼奈米粒子及其降解行為之影響
論文名稱(外文):Microfluidic synthesis of Au@Cu2O nanoparticles and the impact on its degradation of MB behaviour
指導教授:楊詠荍
指導教授(外文):YEUNG, WING-KIU
口試委員:楊詠荍張裕煦張慧芳
口試委員(外文):YEUNG, WING-KIUCHANG, YU-HSUCHANG, HUI-FANG
口試日期:2024-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:164
中文關鍵詞:微流體Au@Cu2O核殼奈米顆粒降解COMSOL
外文關鍵詞:MicrofluidicAu@Cu2Ocore-shellnanoparticledegradationCOMSOL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要i
ABSTRACT iii
Acknowledgements v
List of Tables ix
List of Figures x
Chapter 1 INTRODUCTION 1
1.1 Aims and Objectives 3
Chapter 2 LITERATURE REVIEW 5
2.1 Overview of Nanoparticle 5
2.1.1 Methods for Nanoparticle Synthesis 5
2.1.2 Nanoparticle Crystallisation Challenges 7
2.2 Microfluidics NP Synthesis 13
2.2.1 Batch Method Synthesis Process 14
2.2.2 Microfluidic Synthesis Process 16
2.2.3 Microfluidic Channel Materials and Design 23
2.3 COMSOL simulation of microchannel 30
2.4 Review of photodegradation properties of NP 35
2.4.1 Cuprous oxide (Cu2O) octahedron structures 44
2.4.2 Au@Cu2O octahedron structures 47
Chapter 3 Experimental 53
3.1 Materials and Chemicals 53
3.2 Analytical Instrumentation and Methods 54
3.2.1 Analysis of X-ray diffraction 54
3.2.2 Morphology and Elemental Composition Analysis 55
3.2.3 Ultraviolet-visible (UV-Vis) spectroscopy 55
3.2.4 Photodegradation light source 56
3.3 Experimental method 56
3.3.1 Batch techniques for synthesis nanoparticles 56
3.3.2 Design and Fabrication of the Microfluidic Chip 60
3.3.3 Microfluidic synthesis of nanoparticle 65
3.4 Photodegradation of Methylene blue (MB) 69
3.4.1 Traditional Quartz Photocatalytic Reaction Flask 70
3.4.2 Photocatalytic Chip with Artificial Hole Structures 72
3.4.3 Reaction mechanism of photocatalytic degradation of MB 73
3.5 Numerical study of COMSOL Multiphysics model 76
3.5.1 Simulation Design for Mixing Efficiency in Nanoparticle Synthesis Microfluidic Chip 77
3.5.2 Simulation Design of Particle Tracking in Cross-Section of Artificial Hole Photocatalytic Chip 81
Chapter 4 Result and Discussion 85
4.1 Synthesis of Au tetrahedra Nanoparticles 85
4.2 Synthesis of Cu2O and Au@Cu2O Core-Shell Nanoparticles 94
4.2.1 COMSOL simulation of microchannel mixing effects 94
4.2.2 Microfluidic Synthesis Parameter Database 97
4.2.3 Characterization Results 100
4.3 The effect of photocatalytic degradation of Methylene Blue (MB) 116
4.3.1 Nanoparticle Volume Surface Area and Particle Count per Millilitre 116
4.3.2 Establishment of the Standard Curve 124
4.3.3 Photodegradation Efficiency in Traditional Quartz Photocatalytic Reaction Bottles 125
4.3.4 Photodegradation Efficiency of Artificial Porous Structure Photocatalytic Chips 130
Chapter 5 Conclusions 139
Chapter 6 Future work 142
Reference 144
Supporting Information 160

(1) Song, Y.; Hormes, J.; Kumar, C. S. Microfluidic synthesis of nanomaterials. small 2008, 4 (6), 698-711.
(2) Pinho, B.; Zhang, K.; Hoye, R. L.; Torrente‐Murciano, L. Importance of Monitoring the Synthesis of Light‐Interacting Nanoparticles–A Review on In Situ, Ex Situ, and Online Time‐Resolved Studies. Advanced Optical Materials 2022, 10 (14), 2200524.
(3) Yao, C.; Dong, Z.; Zhao, Y.; Chen, G. Gas-liquid flow and mass transfer in a microchannel under elevated pressures. Chemical Engineering Science 2015, 123, 137-145.
(4) Tao, S.; Yang, M.; Chen, H.; Ren, M.; Chen, G. Microfluidic synthesis of Ag@ Cu2O core-shell nanoparticles with enhanced photocatalytic activity. Journal of Colloid and Interface Science 2017, 486, 16-26.
(5) Kuo, C.-H.; Hua, T.-E.; Huang, M. H. Au nanocrystal-directed growth of Au− Cu2O core− shell heterostructures with precise morphological control. Journal of the American Chemical Society 2009, 131 (49), 17871-17878.
(6) Xiong, J.; Li, Z.; Chen, J.; Zhang, S.; Wang, L.; Dou, S. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@ Cu2O core–shell heteronanowires. ACS Applied Materials & Interfaces 2014, 6 (18), 15716-15725.
(7) Neill, H. Scalable solid state synthesis of core-chell Pt@ Cu2O nanocubes with controlled size and shape. 2021.
(8) Li, J.; Zhao, T.; Chen, T.; Liu, Y.; Ong, C. N.; Xie, J. Engineering noble metal nanomaterials for environmental applications. Nanoscale 2015, 7 (17), 7502-7519.
(9) Kim, J. E.; Choi, J. H.; Colas, M.; Kim, D. H.; Lee, H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosensors and Bioelectronics 2016, 80, 543-559.
(10) Mirzaei, A.; Janghorban, K.; Hashemi, B.; Neri, G. Metal-core@ metal oxide-shell nanomaterials for gas-sensing applications: a review. Journal of Nanoparticle Research 2015, 17, 1-36.
(11) Ahmed, S. F.; Khalid, M.; Rashmi, W.; Chan, A.; Shahbaz, K. Recent progress in solar thermal energy storage using nanomaterials. Renewable and Sustainable Energy Reviews 2017, 67, 450-460.
(12) Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal 2016, 306, 1116-1137.
(13) Sebastian, V. Toward continuous production of high-quality nanomaterials using microfluidics: Nanoengineering the shape, structure and chemical composition. Nanoscale 2022, 14 (12), 4411-4447.
(14) Tan, C.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature communications 2015, 6 (1), 7873.
(15) Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano letters 2007, 7 (10), 3097-3101.
(16) Saldanha, P. L.; Lesnyak, V.; Manna, L. Large scale syntheses of colloidal nanomaterials. Nano Today 2017, 12, 46-63.
(17) Sebastian Cabeza, V. Chapter High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches. 2016.
(18) Zindani, D.; Kumar, K. Graphene-based polymeric nano-composites: An introspection into functionalization, processing techniques and biomedical applications. Biointerface Res. Appl. Chem 2019, 9, 3926-3933.
(19) Hamdallah, S. I.; Zoqlam, R.; Erfle, P.; Blyth, M.; Alkilany, A. M.; Dietzel, A.; Qi, S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. International journal of pharmaceutics 2020, 584, 119408.
(20) Niculescu, A.-G.; Chircov, C.; Bîrcă, A. C.; Grumezescu, A. M. Nanomaterials synthesis through microfluidic methods: An updated overview. Nanomaterials 2021, 11 (4), 864.
(21) Shrimal, P.; Jadeja, G.; Patel, S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chemical Engineering Research and Design 2020, 153, 728-756.
(22) Kim, G.; Song, S.; Lee, J.; Kim, J.-M. Size-controlled fabrication of supramolecular vesicles for the construction of conjugated polymer sensors with enhanced optical properties. Langmuir 2010, 26 (23), 17840-17842.
(23) Singh, K. R.; Nayak, V.; Sarkar, T.; Singh, R. P. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC advances 2020, 10 (45), 27194-27214.
(24) Mockus, L.; Peterson, J. J.; Lainez, J. M.; Reklaitis, G. V. Batch-to-batch variation: a key component for modeling chemical manufacturing processes. Organic Process Research & Development 2015, 19 (8), 908-914.
(25) Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sönnichsen, C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano letters 2007, 7 (9), 2881-2885.
(26) Uson, L.; Sebastian, V.; Arruebo, M.; Santamaria, J. Continuous microfluidic synthesis and functionalization of gold nanorods. Chemical Engineering Journal 2016, 285, 286-292.
(27) Sebastian, V.; Arruebo, M.; Santamaria, J. Reaction engineering strategies for the production of inorganic nanomaterials. Small 2014, 10 (5), 835-853.
(28) Plouffe, P.; Bittel, M.; Sieber, J.; Roberge, D. M.; Macchi, A. On the scale-up of micro-reactors for liquid–liquid reactions. Chemical Engineering Science 2016, 143, 216-225.
(29) Wong, W. K.; Yap, S. K.; Lim, Y. C.; Khan, S. A.; Pelletier, F.; Corbos, E. C. Robust, non-fouling liters-per-day flow synthesis of ultra-small catalytically active metal nanoparticles in a single-channel reactor. Reaction Chemistry & Engineering 2017, 2 (5), 636-641.
(30) Zhang, L.; Xia, Y. Scaling up the production of colloidal nanocrystals: should we increase or decrease the reaction volume? Advanced materials 2014, 26 (16), 2600-2606.
(31) Gomez, L.; Cebrian, V.; Martin-Saavedra, F.; Arruebo, M.; Vilaboa, N.; Santamaria, J. Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization. Materials Research Bulletin 2013, 48 (10), 4051-4057.
(32) Mills, P. L.; Quiram, D. J.; Ryley, J. F. Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chemical Engineering Science 2007, 62 (24), 6992-7010.
(33) Jensen, K. F. Microreaction engineering—is small better? Chemical Engineering Science 2001, 56 (2), 293-303.
(34) Mülhopt, S.; Diabaté, S.; Dilger, M.; Adelhelm, C.; Anderlohr, C.; Bergfeldt, T.; Gómez de la Torre, J.; Jiang, Y.; Valsami-Jones, E.; Langevin, D. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 2018, 8 (5), 311.
(35) Aziz, N.; Mujtaba, I. Optimal operation policies in batch reactors. Chemical Engineering Journal 2002, 85 (2-3), 313-325.
(36) Roszkowska, P.; Dickenson, A.; Higham, J. E.; Easun, T. L.; Walsh, J.; Slater, A. Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing. Lab on a Chip 2023, 23 (12), 2720-2728.
(37) Seifrid, M.; Pollice, R.; Aguilar-Granda, A.; Morgan Chan, Z.; Hotta, K.; Ser, C. T.; Vestfrid, J.; Wu, T. C.; Aspuru-Guzik, A. Autonomous chemical experiments: Challenges and perspectives on establishing a self-driving lab. Accounts of Chemical Research 2022, 55 (17), 2454-2466.
(38) Ma, J.; Lee, S. M.-Y.; Yi, C.; Li, C.-W. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications–a review. Lab on a Chip 2017, 17 (2), 209-226.
(39) Bilati, U.; Allémann, E.; Doelker, E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. European Journal of Pharmaceutical Sciences 2005, 24 (1), 67-75.
(40) Govender, T.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of controlled release 1999, 57 (2), 171-185.
(41) Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces 2010, 75 (1), 1-18.
(42) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chemical reviews 2005, 105 (4), 1025-1102.
(43) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews 2008, 108 (6), 2064-2110.
(44) Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol− gel approach. Nano letters 2002, 2 (3), 183-186.
(45) Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J. Sol− gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. Journal of the American Chemical Society 2001, 123 (18), 4344-4345.
(46) Bang, J. H.; Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials 2010, 22 (10), 1039-1059.
(47) Sun, L.; Li, J.; Wang, C.; Li, S.; Lai, Y.; Chen, H.; Lin, C. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials 2009, 171 (1-3), 1045-1050.
(48) Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 2001, 17 (10), 2900-2906.
(49) Zhao, X.; Bagwe, R. P.; Tan, W. Development of organic‐dye‐doped silica nanoparticles in a reverse microemulsion. Advanced Materials 2004, 16 (2), 173-176.
(50) Zarur, A. J.; Ying, J. Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. nature 2000, 403 (6765), 65-67.
(51) Lopez-Quintela, M. A. Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Current Opinion in Colloid & Interface Science 2003, 8 (2), 137-144.
(52) Jana, N. R.; Gearheart, L.; Murphy, C. J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of materials 2001, 13 (7), 2313-2322.
(53) Pillai, Z. S.; Kamat, P. V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? The Journal of Physical Chemistry B 2004, 108 (3), 945-951.
(54) Lee, Y.; Choi, J.-r.; Lee, K. J.; Stott, N. E.; Kim, D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 2008, 19 (41), 415604.
(55) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B 2005, 109 (29), 13857-13870.
(56) Wang, H.; Li, X.; Uehara, M.; Yamaguchi, Y.; Nakamura, H.; Miyazaki, M.; Shimizu, H.; Maeda, H. Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chemical communications 2004, (1), 48-49.
(57) Chan, E. M.; Alivisatos, A. P.; Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society 2005, 127 (40), 13854-13861.
(58) Krishnadasan, S.; Brown, R.; Demello, A.; DeMello, J. Intelligent routes to the controlled synthesis of nanoparticles. Lab on a Chip 2007, 7 (11), 1434-1441.
(59) Dai, J.; Yang, X.; Hamon, M.; Kong, L. Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip. Chemical Engineering Journal 2015, 280, 385-390.
(60) Lignos, I.; Stavrakis, S.; Kilaj, A.; deMello, A. J. Millisecond‐timescale monitoring of PbS nanoparticle nucleation and growth using droplet‐based microfluidics. Small 2015, 11 (32), 4009-4017.
(61) Dai, J.; Yang, X.; Hamon, M.; Kong, L.; Lee, W. S.; Park, S.; Hong, J. W. Corrigendum to “Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip”[Chem. Eng. J. 280 (2015) 385–390]. Chemical Engineering Journal 2016, 286, 347.
(62) Watt, J.; Hance, B. G.; Anderson, R. S.; Huber, D. L. Effect of seed age on gold nanorod formation: a microfluidic, real-time investigation. Chemistry of Materials 2015, 27 (18), 6442-6449.
(63) Fu, Q.; Sheng, Y.; Tang, H.; Zhu, Z.; Ruan, M.; Xu, W.; Zhu, Y.; Tang, Z. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS nano 2015, 9 (1), 172-179.
(64) Zhang, L.; Niu, G.; Lu, N.; Wang, J.; Tong, L.; Wang, L.; Kim, M. J.; Xia, Y. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano letters 2014, 14 (11), 6626-6631.
(65) Angly, J.; Iazzolino, A.; Salmon, J.-B.; Leng, J.; Chandran, S. P.; Ponsinet, V.; Désert, A.; Le Beulze, A.; Mornet, S.; Tréguer-Delapierre, M. Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles. ACS nano 2013, 7 (8), 6465-6477.
(66) Wagner, J.; Köhler, J. Continuous synthesis of gold nanoparticles in a microreactor. Nano letters 2005, 5 (4), 685-691.
(67) Marre, S.; Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chemical Society Reviews 2010, 39 (3), 1183-1202.
(68) Krishna, K. S.; Li, Y.; Li, S.; Kumar, C. S. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Advanced drug delivery reviews 2013, 65 (11-12), 1470-1495.
(69) Abou‐Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in inorganic chemistry. Angewandte Chemie International Edition 2010, 49 (36), 6268-6286.
(70) Saleh, T. A. Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation 2020, 20, 101067.
(71) Aljuhani, E.; Al-Ahmed, Z. A. Evaluation of the physical parameters of nano-sized tetrachlorosilane as an inorganic material a mixed solvent using Fuoss-Shedlovsky and Fuoss-Hsia-Fernandez-Prini techniques. Biointerface Research in Applied Chemistry 2020, 10 (4), 5741-5746.
(72) Ejtemaee, P.; Khamehchi, E. Experimental investigation of rheological properties and formation damage of water-based drilling fluids in the presence of Al2O3, Fe3O4, and TiO2 nanoparticles. Biointerface Res. Appl. Chem 2020, 10, 5886-5894.
(73) Bally, F.; Serra, C. A.; Hessel, V.; Hadziioannou, G. Micromixer-assisted polymerization processes. Chemical Engineering Science 2011, 66 (7), 1449-1462.
(74) Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab on a Chip 2018, 18 (16), 2323-2347.
(75) Pan, L.-J.; Tu, J.-W.; Ma, H.-T.; Yang, Y.-J.; Tian, Z.-Q.; Pang, D.-W.; Zhang, Z.-L. Controllable synthesis of nanocrystals in droplet reactors. Lab on a Chip 2018, 18 (1), 41-56.
(76) Hwang, J.; Cho, Y. H.; Park, M. S.; Kim, B. H. Microchannel fabrication on glass materials for microfluidic devices. International Journal of Precision Engineering and Manufacturing 2019, 20, 479-495.
(77) Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nano-enabled medical applications 2020, 93-112.
(78) Lai, X.; Lu, B.; Zhang, P.; Zhang, X.; Pu, Z.; Yu, H.; Li, D. Sticker microfluidics: a method for fabrication of customized monolithic microfluidics. ACS Biomaterials Science & Engineering 2019, 5 (12), 6801-6810.
(79) Jain, V.; Patel, V. B.; Singh, B.; Varade, D. Microfluidic device based molecular self-assembly structures. Journal of Molecular Liquids 2022, 362, 119760.
(80) Yahyazadeh Shourabi, A.; Salajeghe, R.; Barisam, M.; Kashaninejad, N. A Proof-of-Concept Study Using Numerical Simulations of an Acoustic Spheroid-on-a-Chip Platform for Improving 3D Cell Culture. Sensors 2021, 21 (16), 5529.
(81) Niculescu, A.-G.; Chircov, C.; Bîrcă, A. C.; Grumezescu, A. M. Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences 2021, 22 (4), 2011.
(82) Özkayar, G.; Mutlu, E.; Şahin, Ş.; Demircan Yalçın, Y.; Töral, T.; Külah, H.; Yildirim, E.; Zorlu, Ö.; Özgür, E. A novel microfluidic method utilizing a hydrofoil structure to improve circulating tumor cell enrichment: Design and analytical validation. Micromachines 2020, 11 (11), 981.
(83) Hunt, M.; Taverne, M.; Askey, J.; May, A.; Van Den Berg, A.; Ho, Y.-L. D.; Rarity, J.; Ladak, S. Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 2020, 13 (3), 761.
(84) Convery, N.; Gadegaard, N. 30 years of microfluidics. Micro and Nano Engineering 2019, 2, 76-91.
(85) Gale, B. K.; Jafek, A. R.; Lambert, C. J.; Goenner, B. L.; Moghimifam, H.; Nze, U. C.; Kamarapu, S. K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 2018, 3 (3), 60.
(86) He, Y.; Wu, Y.; Fu, J. z.; Gao, Q.; Qiu, J. j. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 2016, 28 (8), 1658-1678.
(87) Zhang, D.; Bi, H.; Liu, B.; Qiao, L. Detection of pathogenic microorganisms by microfluidics based analytical methods. Analytical chemistry 2018, 90 (9), 5512-5520.
(88) Yu, B.; Lee, R. J.; Lee, L. J. Microfluidic methods for production of liposomes. Methods in enzymology 2009, 465, 129-141.
(89) Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—a review on passive and active mixing principles. Chemical engineering science 2005, 60 (8-9), 2479-2501.
(90) Zhao, C.-X.; He, L.; Qiao, S. Z.; Middelberg, A. P. Nanoparticle synthesis in microreactors. Chemical Engineering Science 2011, 66 (7), 1463-1479.
(91) Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O. C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano letters 2008, 8 (9), 2906-2912.
(92) Rhee, M.; Valencia, P. M.; Rodriguez, M. I.; Langer, R.; Farokhzad, O. C.; Karnik, R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Advanced materials (Deerfield Beach, Fla.) 2011, 23 (12), H79.
(93) Lin, X. Z.; Terepka, A. D.; Yang, H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano letters 2004, 4 (11), 2227-2232.
(94) Cheng, Y.; Da Ling, S.; Geng, Y.; Wang, Y.; Xu, J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances 2021, 3 (8), 2180-2195.
(95) Baret, J.-C. Surfactants in droplet-based microfluidics. Lab on a Chip 2012, 12 (3), 422-433.
(96) Niu, G.; Ruditskiy, A.; Vara, M.; Xia, Y. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chemical Society Reviews 2015, 44 (16), 5806-5820.
(97) Duraiswamy, S.; Khan, S. A. Droplet‐based microfluidic synthesis of anisotropic metal nanocrystals. small 2009, 5 (24), 2828-2834.
(98) Yen, B. K.; Günther, A.; Schmidt, M. A.; Jensen, K. F.; Bawendi, M. G. A microfabricated gas–liquid segmented flow reactor for high‐temperature synthesis: the case of CdSe quantum dots. Angewandte Chemie 2005, 117 (34), 5583-5587.
(99) Günther, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M. A.; Jensen, K. F. Micromixing of miscible liquids in segmented gas− liquid flow. Langmuir 2005, 21 (4), 1547-1555.
(100) Yu, Z.; Hemminger, O.; Fan, L.-S. Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels. Chemical Engineering Science 2007, 62 (24), 7172-7183.
(101) Wang, J.; Song, Y. Microfluidic synthesis of nanohybrids. Small 2017, 13 (18), 1604084.
(102) Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Accounts of chemical research 2013, 46 (11), 2396-2406.
(103) Martins, J. P.; Torrieri, G.; Santos, H. A. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert opinion on drug delivery 2018, 15 (5), 469-479.
(104) Singh, A.; Malek, C. K.; Kulkarni, S. K. Development in microreactor technology for nanoparticle synthesis. International Journal of Nanoscience 2010, 9 (01n02), 93-112.
(105) Campbell, S. B.; Wu, Q.; Yazbeck, J.; Liu, C.; Okhovatian, S.; Radisic, M. Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS biomaterials science & engineering 2020, 7 (7), 2880-2899.
(106) Kotz, F.; Mader, M.; Dellen, N.; Risch, P.; Kick, A.; Helmer, D.; Rapp, B. E. Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 2020, 11 (9), 873.
(107) Mofazzal Jahromi, M. A.; Abdoli, A.; Rahmanian, M.; Bardania, H.; Bayandori, M.; Moosavi Basri, S. M.; Kalbasi, A.; Aref, A. R.; Karimi, M.; Hamblin, M. R. Microfluidic brain-on-a-chip: perspectives for mimicking neural system disorders. Molecular neurobiology 2019, 56, 8489-8512.
(108) Zhang, Y.; Liu, J.; Wang, H.; Fan, Y. Laser-induced selective wax reflow for paper-based microfluidics. RSC advances 2019, 9 (20), 11460-11464.
(109) Soum, V.; Park, S.; Brilian, A. I.; Kwon, O.-S.; Shin, K. Programmable paper-based microfluidic devices for biomarker detections. Micromachines 2019, 10 (8), 516.
(110) Schaumburg, F.; Berli, C. L. Assessing the rapid flow in multilayer paper-based microfluidic devices. Microfluidics and Nanofluidics 2019, 23 (8), 98.
(111) Damiati, S.; Kompella, U. B.; Damiati, S. A.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes 2018, 9 (2), 103.
(112) Streets, A. M.; Huang, Y. Microfluidics for biological measurements with single-molecule resolution. Current opinion in biotechnology 2014, 25, 69-77.
(113) Yaralioglu, G. G.; Wygant, I. O.; Marentis, T. C.; Khuri-Yakub, B. T. Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical chemistry 2004, 76 (13), 3694-3698.
(114) Pitoteach CO. Perform Multiphysics Simulations of Microfluidic Devices. Fluid heat transfer field, 2012. https://www.pitotech.com.tw/contents/zh-tw/p10037_Microfluidics-Module.html (accessed 2024 April 21).
(115) Salih, N. M.; Hashim, U.; Nayan, N.; Soon, C. F.; Sahdan, M. Z. Numerical simulation of water flow velocity for microfluidic application using COMSOL multiphysics. Advanced Materials Research 2014, 925, 651-655.
(116) Multiphysics, C. Track Charged Particles and Particles in Fluid Flow. https://www.comsol.com/particle-tracing-module (accessed 2024 April 21).
(117) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38.
(118) Zhang, F.; Dong, G.; Wang, M.; Zeng, Y.; Wang, C. Efficient removal of methyl orange using Cu2O as a dual function catalyst. Applied Surface Science 2018, 444, 559-568.
(119) Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chemical reviews 2012, 112 (3), 1555-1614.
(120) Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental science & technology 1998, 32 (5), 726-728.
(121) Zangeneh, H.; Zinatizadeh, A.; Habibi, M.; Akia, M.; Isa, M. H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry 2015, 26, 1-36.
(122) Qin, J.; Huo, J.; Zhang, P.; Zeng, J.; Wang, T.; Zeng, H. Improving the photocatalytic hydrogen production of Ag/gC 3 N 4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 2016, 8 (4), 2249-2259.
(123) Kotz, J. C.; Treichel, P.; Townsend, J. R.; Treichel, D. A. Chemistry & chemical reactivity; Thomson Brooks/Cole Belmont, CA, USA:, 2006.
(124) National Science Council Center for Green Chemistry. Homogeneous Catalysis. 2024, 2008. (accessed April 20.
(125) Minhong, L. Catalyst skills. scientific development, 2002. (accessed 2024 April 20).
(126) Groeneveld, I.; Kanelli, M.; Ariese, F.; van Bommel, M. R. Parameters that affect the photodegradation of dyes and pigments in solution and on substrate–An overview. Dyes and Pigments 2023, 210, 110999.
(127) Jamal, M. A.; Muneer, M.; Iqbal, M. Photo-degradation of monoazo dye blue 13 using advanced oxidation process. Chem. Int 2015, 1 (1), 12-16.
(128) Karlsson, J. K.; Woodford, O. J.; Al-Aqar, R.; Harriman, A. Effects of temperature and concentration on the rate of photobleaching of Erythrosine in water. The Journal of Physical Chemistry A 2017, 121 (45), 8569-8576.
(129) Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Materials Science in Semiconductor Processing 2015, 39, 265-275.
(130) Chiu, Y.-H.; Chang, T.-F. M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9 (5), 430.
(131) Saggioro, E. M.; Oliveira, A. S.; Pavesi, T.; Maia, C. G.; Ferreira, L. F. V.; Moreira, J. C. Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 2011, 16 (12), 10370-10386.
(132) Khalid Saeed, K. S.; Idrees Khan, I. K.; Tamanna Gul, T. G.; Mohammad Sadiq, M. S. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. 2017.
(133) Naushad, M.; Sharma, G.; Alothman, Z. A. Photodegradation of toxic dye using Gum Arabic-crosslinked-poly (acrylamide)/Ni (OH) 2/FeOOH nanocomposites hydrogel. Journal of Cleaner Production 2019, 241, 118263.
(134) Paul, D. R.; Sharma, R.; Nehra, S.; Sharma, A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC advances 2019, 9 (27), 15381-15391.
(135) Herrmann, J.-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis today 1999, 53 (1), 115-129.
(136) Reza, K. M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO 2: a review. Applied Water Science 2017, 7, 1569-1578.
(137) Jiang, H.-Y.; Hu, X.-D.; Zhu, J.-J.; Wan, J.; Yao, J.-B. Studies on the photofading of alizarin, the main component of madder. Dyes and Pigments 2021, 185, 108940.
(138) Minamoto, C.; Fujiwara, N.; Shigekawa, Y.; Tada, K.; Yano, J.; Yokoyama, T.; Minamoto, Y.; Nakayama, S. Effect of acidic conditions on decomposition of methylene blue in aqueous solution by air microbubbles. Chemosphere 2021, 263, 128141.
(139) Shi, X.; Ji, Y.; Hou, S.; Liu, W.; Zhang, H.; Wen, T.; Yan, J.; Song, M.; Hu, Z.; Wu, X. Plasmon enhancement effect in Au gold nanorods@ Cu2O core–shell nanostructures and their use in probing defect states. Langmuir 2015, 31 (4), 1537-1546.
(140) Zhu, J.; Lu, N.; Chen, W.; Kong, L.; Yang, Y.; Ma, D.; Huang, S. Influence of Au nanoparticle shape on Au@ Cu2O heterostructures. Journal of Nanomaterials 2015, 16 (1), 211-211.
(141) Zhou, D.-L.; Feng, J.-J.; Cai, L.-Y.; Fang, Q.-X.; Chen, J.-R.; Wang, A.-J. Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochimica Acta 2014, 115, 103-108.
(142) Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. One‐pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Advanced Materials 2005, 17 (21), 2562-2567.
(143) Kuo, C. H.; Chen, C. H.; Huang, M. H. Seed‐mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Advanced Functional Materials 2007, 17 (18), 3773-3780.
(144) Chang, Y.; Teo, J. J.; Zeng, H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 2005, 21 (3), 1074-1079.
(145) Yang, H.; Xie, J.; juan Bao, S.; Li, C. M. Tailoring Co (OH) 2 hollow nanostructures via Cu2O template etching for high performance supercapacitors. Journal of colloid and interface science 2015, 457, 212-217.
(146) Chai, F.; Li, K.; Song, C.; Guo, X. Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition. Journal of colloid and interface science 2016, 475, 119-125.
(147) Wu, X.; Cai, J.; Li, S.; Zheng, F.; Lai, Z.; Zhu, L.; Chen, T. Au@ Cu2O stellated polytope with core–shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes. Journal of colloid and interface science 2016, 469, 138-146.
(148) Sharma, S.; Basu, S. Construction of an efficient and durable hierarchical porous CuO/SiO2 monolith for synergistically boosting the visible-light-driven degradation of organic pollutants. Separation and Purification Technology 2021, 279, 119759.
(149) Kamranifar, M.; Al-Musawi, T. J.; Amarzadeh, M.; Hosseinzadeh, A.; Nasseh, N.; Qutob, M.; Arghavan, F. S. Quick adsorption followed by lengthy photodegradation using FeNi3@ SiO2@ ZnO: A promising method for complete removal of penicillin G from wastewater. Journal of Water Process Engineering 2021, 40, 101940.
(150) Kuo, C.-H.; Huang, M. H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. The Journal of Physical Chemistry C 2008, 112 (47), 18355-18360.
(151) Du, Q.; Tan, J.; Wang, Q.; Li, C.; Liu, X.; Cai, R.; Ding, Y.; Wang, Y. Electrochemical deposition and formation mechanism of single-crystalline Cu2O octahedra on aluminum. Journal of Analytical Methods in Chemistry 2012, 2012.
(152) Fang, M.-J.; Lin, Y.-C.; Jan, J.-Y.; Lai, T.-H.; Hsieh, P.-Y.; Kuo, M.-Y.; Chiu, Y.-H.; Tsao, C.-W.; Chen, Y.-A.; Wang, Y.-T. Au@ Cu2O core@ shell nanocrystals as sustainable catalysts for efficient hydrogen production from ammonia borane. Applied Catalysis B: Environmental 2023, 324, 122198.
(153) Zhang, Z.; You, R.; Huang, W. Cu2O nanocrystal model catalysts. Chinese Journal of Chemistry 2022, 40 (7), 846-855.
(154) Kusior, A.; Synowiec, M.; Zakrzewska, K.; Radecka, M. Surface-controlled photocatalysis and chemical sensing of TiO2, α-Fe2O3, and Cu2O nanocrystals. Crystals 2019, 9 (3), 163.
(155) Hou, X.; Huang, X.; Ai, Z.; Zhao, J.; Zhang, L. Ascorbic acid/Fe@ Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants. Journal of hazardous materials 2016, 310, 170-178.
(156) Mohamed, H. O.; Obaid, M.; Poo, K.-M.; Abdelkareem, M. A.; Talas, S. A.; Fadali, O. A.; Kim, H. Y.; Chae, K.-J. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chemical Engineering Journal 2018, 349, 800-807.
(157) Zhang, L.; Blom, D. A.; Wang, H. Au–Cu2O core–shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chemistry of Materials 2011, 23 (20), 4587-4598.
(158) Li, D.; Wang, Z. L.; Wang, Z. Phase separation prior to alloying observed in vacuum heating of hybrid Au/Cu2O core–shell nanoparticles. The Journal of Physical Chemistry C 2017, 121 (2), 1387-1392.
(159) Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Platonic gold nanocrystals. Angewandte Chemie International Edition 2004, 43 (28), 3673-3677.
(160) Zhang, Q.; Xie, J.; Yu, Y.; Yang, J.; Lee, J. Y. Tuning the crystallinity of Au nanoparticles. Small 2010, 6 (4), 523-527.
(161) Zheng, Y.; Liu, W.; Lv, T.; Luo, M.; Hu, H.; Lu, P.; Choi, S. I.; Zhang, C.; Tao, J.; Zhu, Y. Seed‐mediated synthesis of gold tetrahedra in high purity and with tunable, well‐controlled sizes. Chemistry–An Asian Journal 2014, 9 (9), 2635-2640.
(162) Park, J.-E.; Lee, Y.; Nam, J.-M. Precisely shaped, uniformly formed gold nanocubes with ultrahigh reproducibility in single-particle scattering and surface-enhanced Raman scattering. Nano letters 2018, 18 (10), 6475-6482.
(163) Xu, S.-L.; Shen, S.-C.; Wei, Z.-Y.; Zhao, S.; Zuo, L.-J.; Chen, M.-X.; Wang, L.; Ding, Y.-W.; Chen, P.; Chu, S.-Q. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research 2020, 13, 2735-2740.
(164) Zhang, Y.-H.; Liu, M.-M.; Chen, J.-L.; Fang, S.-M.; Zhou, P.-P. Recent advances in Cu 2 O-based composites for photocatalysis: a review. Dalton Transactions 2021, 50 (12), 4091-4111.
(165) Zhang, G.; Ma, Y.; Liu, F.; Tong, Z.; Sha, J.; Zhao, W.; Liu, M.; Zheng, Y. Seeded growth of Au@ CuxO core–shell mesoporous nanospheres and their photocatalytic properties. Frontiers in Chemistry 2021, 9, 671220.
(166) Zeng, J.; Zhu, C.; Tao, J.; Jin, M.; Zhang, H.; Li, Z. Y.; Zhu, Y.; Xia, Y. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angewandte Chemie 2012, 124 (10), 2404-2408.
(167) Smith, D. K.; Korgel, B. A. The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods. Langmuir 2008, 24 (3), 644-649. DOI: 10.1021/la703625a.

電子全文 電子全文(網際網路公開日期:20270729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top