跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:JENISHA DAISY PRISCILLAL
研究生(外文):JENISHA DAISY PRISCILLAL
論文名稱:研究生長條件對通過催化化學氣相沉積在LaNi5Ptx和Al3YRhx催化劑上生產碳奈米結構的影響
論文名稱(外文):Investigating the Influence of Growth Conditions on Carbon Nanostructures Production via Catalytic Chemical Vapor Deposition on LaNi5Ptx and Al3YRhx Catalysts
指導教授:王錫福
指導教授(外文):WANG, SEA-FUE
口試委員:王錫福吳玉娟郭東昊孫安正朱瑾
口試委員(外文):WANG, SEA-FUEWU, YU-CHUANKUO, DONG-HAUSUN, AN-CHENGCHU, JIN
口試日期:2024-01-08
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與光電材料外國學生專班(EOMP)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:157
中文關鍵詞:催化化學氣相沉積奈米碳管磁性捲繞效應鎳封裝
外文關鍵詞:Catalytic chemical vapor depositionCarbon nanotubesMagnetismCoiling effectNickel encapsulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
這項研究強調通過催化化學氣相沉積(CCVD)方法生產碳納米結構,這是化學氣相沉積(CVD)和氣固相異質催化(GSHC)的混合過程。研究利用兩個不同系列的金屬間化合物催化劑,即LaNi5Ptx(x=0, 0.05, 0.5, 1.0)和Al3YRhx(x=0, 0.2, 0.5, 1.0),通過弧爐熔煉法製備。這些催化劑在CCVD技術中充當模板,催化將碳前驅物轉化為固體材料。
實驗分為兩個階段。在第一階段中,研究了LaNi5Ptx中Pt含量和Al3YRhx中Rh含量對碳納米結構生成的影響。結果顯示,增加LaNi5Ptx中的Pt含量顯著提高碳樣品產量,而增加Al3YRhx中的Rh含量則導致碳樣品產量下降。觀察到尼克爾包裹的碳納米管(CNTs)和螺旋狀碳奈米線(CNCs)的形成,揭示了催化劑組成對合成碳結構的影響。在第二階段中,由於其優越的產量和碳質量,選擇LaNi5Pt0.5和Al3Y催化劑進行溫度分析。實驗包括在500°C到800°C之間變化的溫度,保持氣體混合物和生長時間恆定。溫度變化導致不同碳結構的形成。對於LaNi5Pt0.5,600°C時的碳樣品呈現奈米線狀,700°C時形成尼克爾簇,而800°C時的碳樣品則是不規則的管狀結構,交錯排列形成交織的CNTs。另一方面,對於Al3Y催化劑,在低溫時產生螺旋狀結構,而在800°C時則呈現類似富勒烯環的鍊狀結構。兩種催化劑都在700°C後的高溫下顯示碳產量的下降。
研究深入探討生長機制,強調了金屬尼克爾簇的封裝和由於引入非六角環而導致的CNCs形成的空間限制。這方面豐富了對合成過程的理解。在研究的結尾階段,通過進行振動樣品磁強計(VSM)研究,探討了合成碳樣品的磁性質。使用LaNi5Ptx催化劑生產的CNTs表現出鐵磁行為,顯示出主動磁性。相反,使用Al3YRhx催化劑生成的CNCs表現出抗磁特性,表明缺乏固有磁性。這方面的研究為不同CNT生產方法所關聯的多樣磁性特性提供了寶貴的見解,豐富了對其材料特性的總體理解。總的來說,這項研究通過闡明催化劑組成、反應溫度和生長機制的作用,以及探索與不同生產方法相關聯的磁性質,有助於碳納米結構合成的推進。

This research places a significant emphasis on the production of carbon nanostructures through the Catalytic Chemical Vapor Deposition (CCVD) method, a hybrid process merging Chemical Vapor Deposition (CVD) and Gas-Solid Heterogeneous Catalysis (GSHC). The study utilizes two different series of intermetallic catalysts, namely LaNi5Ptx (x=0, 0.05, 0.5, 1.0) and Al3YRhx (x=0, 0.2, 0.5, 1.0), prepared through an arc melting process. These catalysts act as templates in the CCVD technique, catalyzing the conversion of carbon precursors into solid materials.
The experiments are conducted in two phases. In the first phase, the influence of varying Pt content in LaNi5Ptx and Rh content in Al3YRhx on the production of carbon nanostructures is examined. Results show that increasing Pt content in LaNi5Ptx significantly enhances the carbon sample yield, while increasing Rh content in Al3YRhx leads to decreased yield. The formation of nickel-encapsulated Carbon Nanotubes (CNTs) and helical Carbon Nanocoils (CNCs) is observed, revealing the impact of catalyst composition on the synthesized carbon structures. In the second phase, LaNi5Pt0.5 and Al3Y catalysts are chosen for temperature analysis due to their superior yields and carbon quality. The experiments involve varying temperatures from 500 °C to 800 °C, maintaining a constant gas mixture, and growth per the temperature variation results in forming distinct carbon structures. For LaNi5Pt0.5, the C samples exhibit nanocoils at 600 °C, nickel cluster encapsulation at 700 °C, and irregular tubular structures at 800 °C. On the other hand, the Al3Y catalyst produces helically coiled structures at lower temperatures and fullerene-like rings at 800 °C. Both catalysts show a decrease in carbon yield beyond 700 °C.
The study delves into the growth mechanisms, emphasizing the encapsulation of metallic nickel clusters and the formation of CNCs due to spatial confinement by introducing non-hexagonal rings. This aspect adds depth to the understanding of the synthesis process. In the concluding phase, the research explores the magnetic properties of the synthesized carbon samples using Vibrating Sample Magnetometer (VSM) studies—CNTs produced using LaNi5Ptx catalyst exhibit ferromagnetic behavior, indicating active magnetism. In contrast, CNCs generated with Al3YRhx catalyst display diamagnetic characteristics, suggesting a lack of inherent magnetism. This aspect of the study provides valuable insights into the diverse magnetic properties associated with different CNT production methods, contributing to a comprehensive understanding of their material characteristics. Overall, this research advances carbon nanostructure synthesis by elucidating the role of catalyst composition, reaction temperature, and growth mechanisms while exploring the magnetic properties associated with distinct production methods.

摘 要 i
ABSTRACT iii
Acknowledgment v
List of tables x
List of Figures xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
Chapter 2 Literature Review 6
2.1 Carbon nanotubes (CNTs) 6
2.2 Structure of CNTs 9
2.3 CNT synthesis 13
2.4 Chemical Vapor Deposition (CVD) 16
2.5 CVD Reactor Type and Design 18
2.6 Effect of Temperature 24
2.7 Effect of Carbon Feedstock 28
2.8 Effect of Carrier Gas 30
2.9 Effect of Reaction Time 31
2.10 Effect of Catalyst 33
2.10.1 Physical State of the Catalyst 34
2.10.2 Chemical State of the Catalyst 37
2.11 Carbon–Metal Binary Phase Diagram Analysis 38
2.12 Choice of catalyst 40
2.12.1 Lanthanum Nickel (LaNi5) Catalyst 42
2.12.2 Aluminium Yttrium (Al3Y) Catalyst 45
2.13 Formation of Nickel-Filled CNTs 47
2.14 Carbon Nanocoils (CNCs) 50
Chapter 3 Instrumentations and Experimental Methods 54
3.1 X-ray diffraction (XRD) 54
3.2 X-ray Photoelectron Spectroscopy (XPS) 55
3.3 Scanning Electron Microscopy (SEM) 56
3.4 Transmission Electron Microscopy (TEM) 56
3.5 Energy-dispersive X-ray spectroscopy (EDS/EDX) 57
3.6 Raman spectroscopy 57
3.7 Vibrating sample magnetometer (VSM) 58
3.8 Thermal CCVD setup 59
3.9 Synthesis of intermetallic catalyst 60
3.9.1 Synthesis of LaNi5Ptx (x= 0, 0.05, 0.5, and 1.0) catalyst 60
3.9.2 Synthesis of and Al3YRhx (x= 0, 0.2, 0.5, and 1.0) catalyst 61
3.10 CNT synthesis 61
3.10.1 CNT synthesis over LaNi5Ptx (x= 0, 0.05, 0.5, and 1.0) catalyst 61
3.10.2 CNT synthesis over Al3YRhx (x= 0, 0.2, 0.5, and 1.0) catalyst 63
Chapter 4 Catalyst characterization 64
4.1 Characterization of LaNi5Ptx (x= 0, 0.05, 0.5, and 1.0) catalyst 64
4.2 Characterization of Al3YRhx (x= 0, 0.2, 0.5, and 1.0) catalyst 68
Chapter 5 Effect of Catalyst Composition on the Growth of Carbon Nanostructures 72
5.1 Characterization of Carbon Nanostructures grown over LaNi5Ptx (x= 0, 0.05, 0.5, and 1.0) 72
5.2 Characterization of Carbon Nanostructures grown over Al3YRhx (x= 0, 0.2, 0.5, and 1.0) catalyst 83
Chapter 6 Effect of temperature on the growth of Carbon Nanostructures 88
6.1 Characterization of Carbon Nanostructures grown over LaNi5Pt0.5 at different temperatures 88
6.2 Characterization of Carbon Nanostructures grown over Al3Y catalyst at different temperature 97
Chapter 7 Yield percentage and growth mechanism 102
7.1 Yield percentage 102
7.2 Temperature Control over Carbon Nanostructure Growth 107
7.3 Catalyst Control over Carbon Nanostructures Growth 114
Chapter 8 Magnetic properties 117
Summary and Conclusion 126
References 129


References
[1] V. Sivasubramaniyam, S. Ramasamy, M. Venkatraman, G. Gatto, A. Kumar, Carbon Nanotubes as an Alternative to Copper Wires in Electrical Machines: A Review, Energies, 16 (2023) 3665.
[2] J.-P. Salvetat, J.-M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A, 69 (1999) 255-260.
[3] M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical review letters, 84 (2000) 5552.
[4] L. Radushkevich, V. Lukyanovich, Carbon structure formed under thermal decomposition of carbon monoxide on iron, Zh. Fiz. Khim, 26 (1952) 88-95.
[5] P. Tesner, A. Echeistova, Investigation of the growth process of carbon-black particles using the electron microscope, Dokl Akad Nauk USSR, 1952, pp. 1029.
[6] J.A. Rajesh, A. Pandurangan, Tunable filling rate and increased ferromagnetic properties of nickel-filled carbon nanotubes synthesized from a Pauli paramagnetic lanthanum nickel (LaNi 5) alloy catalyst, Journal of Materials Chemistry C, 1 (2013) 6996-7008.
[7] A.R. John, P. Arumugam, Studies on structural and magnetic properties of pristine and nickel-filled carbon nanotubes synthesized using LaNi5 alloy particles as a catalyst, Chemical Engineering Journal, 243 (2014) 436-447.
[8] C. He, N. Zhao, C. Shi, J. Li, H. Li, Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes, Materials Research Bulletin, 43 (2008) 2260-2265.
[9] H. Li, N. Zhao, C. He, C. Shi, X. Du, J. Li, Fabrication and growth mechanism of Ni-filled carbon nanotubes by the catalytic method, Journal of alloys and compounds, 465 (2008) 51-55.
[10] L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, M. Meyyappan, Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts, The Journal of Physical Chemistry B, 106 (2002) 5629-5635.
[11] D.P. Burt, W.M. Whyte, J.M. Weaver, A. Glidle, J.P. Edgeworth, J.V. Macpherson, P.S. Dobson, Effects of metal underlayer grain size on carbon nanotube growth, The Journal of Physical Chemistry C, 113 (2009) 15133-15139.
[12] S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Mechanical and physical properties on carbon nanotube, Journal of Physics and Chemistry of solids, 61 (2000) 1153-1158.
[13] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano letters, 9 (2009) 3137-3141.
[14] J.W. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, 391 (1998) 59-62.
[15] T. Yamabe, K. Fukui, K. Tanaka, The science and technology of carbon nanotubes, Elsevier1999.
[16] P.J. Harris, Carbon nanotube composites, International materials reviews, 49 (2004) 31-43.
[17] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates, Chemical Physics Letters, 377 (2003) 49-54.
[18] R. Saito, G. Dresselhaus, M. Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, 61 (2000) 2981.
[19] A. Jorio, R. Saito, J. Hafner, C. Lieber, D. Hunter, T. McClure, G. Dresselhaus, M. Dresselhaus, Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Physical Review Letters, 86 (2001) 1118.
[20] A. Aqel, K.M. Abou El-Nour, R.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, Arabian Journal of Chemistry, 5 (2012) 1-23.
[21] Z. Tang, N. Wang, X. Zhang, J. Wang, C.T. Chan, P. Sheng, Novel properties of 0.4 nm single-walled carbon nanotubes templated in the channels of AlPO4-5 single crystals, New Journal of Physics, 5 (2003) 146.
[22] L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, The smallest carbon nanotube, Nature, 408 (2000) 50-50.
[23] Z. Tang, L. Zhang, N. Wang, X. Zhang, J. Wang, G. Li, Z. Li, G. Wen, C.T. Chan, P. Sheng, Ultra-small single-walled carbon nanotubes and their superconductivity properties, Synthetic metals, 133 (2003) 689-693.
[24] W. Liang, G. Chen, Z. Li, Z.-K. Tang, Absorption spectra and chirality of single-walled 4 Å carbon nanotubes, Applied physics letters, 80 (2002) 3415-3417.
[25] N. Sano, M. Chhowalla, D. Roy, G. Amaratunga, Viability of sub-0.4-nm diameter carbon nanotubes, Physical Review B, 66 (2002) 113403.
[26] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. Jones, Y. Ando, Smallest carbon nanotube is 3 Å in diameter, Physical review letters, 92 (2004) 125502.
[27] B. Agrawal, S. Agrawal, R. Srivastava, An ab initio study of optical and Raman spectra of heavily Li-doped 4 Å carbon nanotubes, Journal of Physics: Condensed Matter, 16 (2004) 1467.
[28] Y. Zhang, H. Gu, S. Iijima, Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere, Applied physics letters, 73 (1998) 3827-3829.
[29] N. Arora, N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diamond and related materials, 50 (2014) 135-150.
[30] C. Scott, S. Arepalli, P. Nikolaev, R. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser ablation process, Applied Physics A Materials Science And Processing, 74 (2002) 11-12.
[31] Y. Ando, X. Zhao, Synthesis of carbon nanotubes by arc-discharge method, New diamond and frontier carbon technology, 16 (2006) 123-138.
[32] K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Materials Science in Semiconductor Processing, 41 (2016) 67-82.
[33] V. Vinciguerra, F. Buonocore, G. Panzera, L. Occhipinti, Growth mechanisms in chemical vapour deposited carbon nanotubes, Nanotechnology, 14 (2003) 655.
[34] T.-Y. Tsai, N.-H. Tai, K. Chen, S. Lee, L. Chan, Y. Chang, Growth of vertically aligned carbon nanotubes on glass substrate at 450 C through the thermal chemical vapor deposition method, Diamond and related materials, 18 (2009) 307-311.
[35] Y. Zhang, Physical properties investigation of nanostructured materials and their applications, University of California, Santa Cruz2008.
[36] J. Abrahamson, P.G. Wiles, B.L. Rhoades, Structure of carbon fibres found on carbon arc anodes, Carbon, 11 (1999) 1873-1874.
[37] P. Wiles, J. Abrahamson, Carbon fibre layers on arc electrodes—I: their properties and cool-down behaviour, Carbon, 16 (1978) 341-349.
[38] X.-D. Wang, K. Vinodgopal, G.-P. Dai, Synthesis of carbon nanotubes by catalytic chemical vapor deposition, Perspective of carbon nanotubes, (2019) 1-19.
[39] H. Moffat, K.F. Jensen, Complex flow phenomena in MOCVD reactors: I. Horizontal reactors, Journal of Crystal Growth, 77 (1986) 108-119.
[40] H. Moffat, K. Jensen, Three‐dimensional flow effects in silicon CVD in horizontal reactors, Journal of the Electrochemical society, 135 (1988) 459.
[41] J. Williams, R. Peterson, The application of holographic interferometry to the visualization of flow and temperature profiles in a MOCVD reactor cell, Journal of Crystal Growth, 77 (1986) 128-135.
[42] W.G. Breiland, G.H. Evans, Design and verification of nearly ideal flow and heat transfer in a rotating disk chemical vapor deposition reactor, Journal of the Electrochemical Society, 138 (1991) 1806.
[43] K.B. Teo, C. Singh, M. Chhowalla, W.I. Milne, Catalytic synthesis of carbon nanotubes and nanofibers, Encyclopedia of nanoscience and nanotechnology, 10 (2003).
[44] P.M. Ajayan, Nanotubes from carbon, Chem. Rev., 99 (1999) 1787-1799.
[45] K. Mizuno, K. Hata, T. Saito, S. Ohshima, M. Yumura, S. Iijima, Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates, The Journal of Physical Chemistry B, 109 (2005) 2632-2637.
[46] E. Mora, T. Tokune, A.R. Harutyunyan, Continuous production of single-walled carbon nanotubes using a supported floating catalyst, Carbon, 45 (2007) 971-977.
[47] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical physics letters, 360 (2002) 229-234.
[48] M. Kumar, Y. Ando, Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support, Carbon, 43 (2005) 533-540.
[49] A. Muataz, F. Ahmadun, C. Guan, E. Mahdi, A. Rinaldi, Effect of reaction temperature on the production of carbon nanotubes, Nano, 1 (2006) 251-257.
[50] Y. Yao, L.K. Falk, R.E. Morjan, O. Nerushev, E.E. Campbell, Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: the nanotube film, Journal of Materials Science: Materials in Electronics, 15 (2004) 583-594.
[51] J.E. Herrera, L. Balzano, A. Borgna, W.E. Alvarez, D.E. Resasco, Relationship between the structure/composition of Co–Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation, Journal of Catalysis, 204 (2001) 129-145.
[52] K.-E. Kim, K.-J. Kim, W.S. Jung, S.Y. Bae, J. Park, J. Choi, J. Choo, Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene, Chemical physics letters, 401 (2005) 459-464.
[53] S.Y. Son, Y. Lee, S. Won, D.H. Lee, S.D. Kim, S.W. Sung, High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas− solid fluidized beds, Industrial & Engineering Chemistry Research, 47 (2008) 2166-2175.
[54] R. Andrews, D. Jacques, D. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application, Accounts of chemical research, 35 (2002) 1008-1017.
[55] H. Kathyayini, I. Willems, A. Fonseca, J.B. Nagy, N. Nagaraju, Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes, Catalysis Communications, 7 (2006) 140-147.
[56] L. Cin, S. Xie, D. Tang, X. Yan, Y. Li, Z. Liu, X. Zou, W. Zhou, G. Wang, Controllable growth of single wall carbon nanotube by pyrolyzing acetylene on floating iron catalyst, Chem. Phys. Lett, 349 (2001) 191-195.
[57] R. Smajda, Á. Kukovecz, Z. Kónya, I. Kiricsi, Structure and gas permeability of multi-wall carbon nanotube buckypapers, Carbon, 45 (2007) 1176-1184.
[58] A.-C. Dupuis, The catalyst in the CCVD of carbon nanotubes—a review, Progress in materials science, 50 (2005) 929-961.
[59] Y. Wang, F. Wei, G. Gu, H. Yu, Agglomerated carbon nanotubes and its mass production in a fluidized-bed reactor, Physica B: Condensed Matter, 323 (2002) 327-329.
[60] M. Perez-Cabero, I. Rodrıguez-Ramos, A. Guerrero-Ruız, Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor, Journal of catalysis, 215 (2003) 305-316.
[61] Y. Hao, Z. Qunfeng, W. Fei, Q. Weizhong, L. Guohua, Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism, Carbon, 41 (2003) 2855-2863.
[62] A. Kukovecz, D. Mehn, E. Nemes-Nagy, R. Szabo, I. Kiricsi, Optimization of CCVD synthesis conditions for single-wall carbon nanotubes by statistical design of experiments (DoE), Carbon, 43 (2005) 2842-2849.
[63] F. García-García, M. Pérez-Cabero, D. Nevskaia, I. Rodríguez-Ramos, A. Guerrero-Ruiz, Improving the synthesis of high purity carbon nanotubes in a catalytic fluidized bed reactor and their comparative test for hydrogen adsorption capacity, Catalysis today, 133 (2008) 815-821.
[64] W. Qian, T. Liu, F. Wei, Z. Wang, G. Luo, H. Yu, Z. Li, The evaluation of the gross defects of carbon nanotubes in a continuous CVD process, Carbon, 41 (2003) 2613-2617.
[65] A. Morançais, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp, A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition, Carbon, 45 (2007) 624-635.
[66] P. Venegonia, R, Serp; R, Feurer; Y, K.(2002). Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor, Carbon, 4 1799-1807.
[67] M. Corrias, B. Caussat, A. Ayral, J. Durand, Y. Kihn, P. Kalck, P. Serp, Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process, Chemical Engineering Science, 58 (2003) 4475-4482.
[68] Y.-L. Li, I.A. Kinloch, M.S. Shaffer, J. Geng, B. Johnson, A.H. Windle, Synthesis of single-walled carbon nanotubes by a fluidized-bed method, Chemical physics letters, 384 (2004) 98-102.
[69] S. Son, D.H. Lee, S.D. Kim, S.W. Sung, Effect of inert particles on the synthesis of carbon nanotubes in a gas-solid fluidized bed reactor, Journal of Industrial and Engineering Chemistry, 13 (2007) 257-264.
[70] G. Luo, Z. Li, F. Wei, L. Xiang, X. Deng, Y. Jin, Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed, Physica B: Condensed Matter, 323 (2002) 314-317.
[71] U. Arena, M.L. Mastellone, G. Camino, E. Boccaleri, An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins, Polymer Degradation and Stability, 91 (2006) 763-768.
[72] X. Liu, H. Sun, Y. Chen, R. Lau, Y. Yang, Preparation of large particle MCM-41 and investigation on its fluidization behavior and application in single-walled carbon nanotube production in a fluidized-bed reactor, Chemical Engineering Journal, 142 (2008) 331-336.
[73] Y. Wang, F. Wei, G. Luo, H. Yu, G. Gu, The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chemical Physics Letters, 364 (2002) 568-572.
[74] S.Y. Son, D.H. Lee, S.D. Kim, S.W. Sung, Y.S. Park, J.H. Han, Synthesis of multi-walled carbon nanotube in a gas-solid fluidized bed, Korean Journal of Chemical Engineering, 23 (2006) 838-841.
[75] K. Hernadi, A. Fonseca, J. Nagy, D. Bernaerts, A. Lucas, Fe-catalyzed carbon nanotube formation, Carbon, 34 (1996) 1249-1257.
[76] A.M. Cassell, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai, Directed growth of free-standingsingle-walled carbon nanotubes, Journal of the American Chemical Society, 121 (1999) 7975-7976.
[77] W. Li, S. Xie, L.X. Qian, B. Chang, B. Zou, W. Zhou, R. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274 (1996) 1701-1703.
[78] R. Sen, A. Govindaraj, C. Rao, Carbon nanotubes by the metallocene route, Chemical physics letters, 267 (1997) 276-280.
[79] B. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P. Ajayan, Organized assembly of carbon nanotubes, Nature, 416 (2002) 495-496.
[80] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical physics letters, 313 (1999) 91-97.
[81] M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, Journal of nanoscience and nanotechnology, 10 (2010) 3739-3758.
[82] M. José‐Yacamán, M. Miki‐Yoshida, L. Rendon, J. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied physics letters, 62 (1993) 202-204.
[83] Z.-J. Liu, R. Che, Z. Xu, L.-M. Peng, Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane, Synthetic Metals, 128 (2002) 191-195.
[84] N. Li, X. Chen, L. Stoica, W. Xia, J. Qian, J. Aßmann, W. Schuhmann, M. Muhler, The catalytic synthesis of three‐dimensional hierarchical carbon nanotube composites with high electrical conductivity based on electrochemical iron deposition, Advanced Materials, 19 (2007) 2957-2960.
[85] H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical physics letters, 260 (1996) 471-475.
[86] K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production of nanotubes by the catalytic decomposition of different carbon-containing compounds, Applied Catalysis A: General, 199 (2000) 245-255.
[87] H. Ago, K. Nakamura, N. Uehara, M. Tsuji, Roles of metal− support interaction in growth of single-and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO, The Journal of Physical Chemistry B, 108 (2004) 18908-18915.
[88] C.L. Pint, S.T. Pheasant, M. Pasquali, K.E. Coulter, H.K. Schmidt, R.H. Hauge, Synthesis of high aspect-ratio carbon nanotube “flying carpets” from nanostructured flake substrates, Nano letters, 8 (2008) 1879-1883.
[89] S. Noda, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, Y. Yamaguchi, Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support, Japanese journal of applied physics, 46 (2007) L399.
[90] A. Botello-Méndez, J. Campos-Delgado, A. Morelos-Gómez, J.M. Romo-Herrera, Á.G. Rodríguez, H. Navarro, M.A. Vidal, H. Terrones, M. Terrones, Controlling the dimensions, reactivity and crystallinity of multiwalled carbon nanotubes using low ethanol concentrations, Chemical Physics Letters, 453 (2008) 55-61.
[91] G. Yu, J. Gong, S. Wang, D. Zhu, S. He, Z. Zhu, Etching effects of ethanol on multi-walled carbon nanotubes, Carbon, 44 (2006) 1218-1224.
[92] A. Bachmatiuk, E. Borowiak-Palen, R. Kalenczuk, Advances in engineering of diameter and distribution of the number of walls of carbon nanotubes in alcohol CVD, Nanotechnology, 19 (2008) 365605.
[93] W. Qian, H. Yu, F. Wei, Q. Zhang, Z. Wang, Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur, Carbon (New York, NY), 40 (2002) 2968-2970.
[94] R. Bonadiman, M. Lima, M. De Andrade, C. Bergmann, Production of single and multi-walled carbon nanotubes using natural gas as a precursor compound, Journal of materials science, 41 (2006) 7288-7295.
[95] Y.-w. Yen, M.-D. Huang, F.-J. Lin, Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers, Diamond and Related Materials, 17 (2008) 567-570.
[96] R. Mathur, C. Lal, D. Sharma, Catalyst-free carbon nanotubes from coal-based material, Energy Sources, Part A, 29 (2007) 21-27.
[97] J. Qiu, Y. An, Z. Zhao, Y. Li, Y. Zhou, Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method, Fuel processing technology, 85 (2004) 913-920.
[98] Q. Li, H. Yan, J. Zhang, Z. Liu, Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition, Carbon, 42 (2004) 829-835.
[99] W. Mi, J. Lin, Q. Mao, Y. Li, B. Zhang, A Study on the effects of carrier gases on the structure and morphology of carbon nanotubes prepared by pyrolysis of ferrocene and C2H2 mixture, Journal of Natural Gas Chemistry, 14 (2005) 151-155.
[100] G. Xiong, Y. Suda, D. Wang, J. Huang, Z. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition, Nanotechnology, 16 (2005) 532.
[101] Y.K. Yap, V. Kayastha, S. Hackney, S. Dimovski, Y. Gogotsi, Effect of carrier gas on the growth rate, growth density, and structure of carbon nanotubes, MRS Online Proceedings Library (OPL), 818 (2004) M11. 31.11.
[102] Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes, The Journal of Physical Chemistry B, 105 (2001) 11424-11431.
[103] W. Qian, T. Liu, F. Wei, Z. Wang, Y. Li, Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition, Applied Catalysis A: General, 258 (2004) 121-124.
[104] Á. Kukovecz, R. Smajda, Z. Kónya, I. Kiricsi, Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers, Carbon, 45 (2007) 1696-1698.
[105] L. Zheng, X. Liao, Y.T. Zhu, Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition, Materials Letters, 60 (2006) 1968-1972.
[106] E. Lamouroux, P. Serp, Y. Kihn, P. Kalck, Identification of key parameters for the selective growth of single or double wall carbon nanotubes on FeMo/Al2O3 CVD catalysts, Applied Catalysis A: General, 323 (2007) 162-173.
[107] Y. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato, S. Tsuruoka, Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method, Carbon, 43 (2005) 2243-2250.
[108] R. Brukh, S. Mitra, Mechanism of carbon nanotube growth by CVD, Chemical physics letters, 424 (2006) 126-132.
[109] D.-H. Kim, H.-S. Jang, C.-D. Kim, D.-S. Cho, H.-D. Kang, J.-G. Jee, H.-R. Lee, In situ monitoring of carbon nanotube growth, Carbon, 3 (2003) 583-585.
[110] F. Ding, P. Larsson, J.A. Larsson, R. Ahuja, H. Duan, A. Rosén, K. Bolton, The importance of strong carbon− metal adhesion for catalytic nucleation of single-walled carbon nanotubes, Nano letters, 8 (2008) 463-468.
[111] R. Morjan, O. Nerushev, M. Sveningsson, F. Rohmund, L. Falk, E. Campbell, Growth of carbon nanotubes from C 60, Applied Physics A, 78 (2004) 253-261.
[112] H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays, Applied Physics Letters, 77 (2000) 79-81.
[113] A. Kukovecz, Z. Konya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J. Nagy, I. Kiricsi, Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol–gel silica–aluminas, Physical Chemistry Chemical Physics, 2 (2000) 3071-3076.
[114] K.Y. Tran, B. Heinrichs, J.-F. Colomer, J.-P. Pirard, S. Lambert, Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts, Applied Catalysis A: General, 318 (2007) 63-69.
[115] T. Yamada, T. Namai, K. Hata, D.N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, S. Iijima, Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nature nanotechnology, 1 (2006) 131-136.
[116] N. Nagaraju, A. Fonseca, Z. Konya, J.B. Nagy, Alumina and silica supported metal catalysts for the production of carbon nanotubes, Journal of molecular catalysis A: Chemical, 181 (2002) 57-62.
[117] E. van Steen, F.F. Prinsloo, Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts, Catalysis Today, 71 (2002) 327-334.
[118] E. Lamouroux, P. Serp, Y. Kihn, P. Kalck, New efficient Fe2O3 and FeMo supported OMCVD catalysts for single wall carbon nanotubes growth, Catalysis Communications, 7 (2006) 604-609.
[119] R. Baker, TK, Barber, MA, Harris, PS, Feates, F. S., and Waite, R. 1.(1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, 1, Catalysis, 26 51-62.
[120] R. Baker, P. Harris, R. Thomas, R. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, Journal of catalysis, 30 (1973) 86-95.
[121] R. Baker, R. Waite, Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene, Journal of Catalysis, 37 (1975) 101-105.
[122] G.G. Tibbetts, Why are carbon filaments tubular?, Journal of crystal growth, 66 (1984) 632-638.
[123] R. Wagner, The vapor-liquid-solid mechanism of crystal growth and its application to silicon, Trans. Metallur. Soc. AIME, 233 (1965) 1053-1064.
[124] K. Bolton, F. Ding, A. Rosén, Atomistic simulations of catalyzed carbon nanotube growth, Journal of nanoscience and nanotechnology, 6 (2006) 1211-1224.
[125] A. Harutyunyan, T. Tokune, E. Mora, Liquid as a required catalyst phase for carbon single-walled nanotube growth, Applied Physics Letters, 87 (2005).
[126] F. Ding, K. Bolton, A. Rosén, Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients, Computational materials science, 35 (2006) 243-246.
[127] R. Baker, J. Alonzo, J. Dumesic, D. Yates, Effect of the surface state of iron on filamentous carbon formation, Journal of catalysis, 77 (1982) 74-84.
[128] K. Yang, R. Yang, The accelerating and retarding effects of hydrogen on carbon deposition on metal surfaces, Carbon, 24 (1986) 687-693.
[129] M. Audier, P. Bowen, W. Jones, Electron microscopic and mössbauer study of the iron carbides θ-Fe3C and X-Fe5C2 formed during the disproportionation of CO, Journal of crystal growth, 64 (1983) 291-296.
[130] H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles, Nano letters, 8 (2008) 2082-2086.
[131] F. Ding, A. Rosén, K. Bolton, Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth, The Journal of chemical physics, 121 (2004) 2775-2779.
[132] V. Kuznetsov, Mechanism of carbon filaments and nanotubes formation on metal catalysts, NATO Advanced Study Institute, ASI Nanoengineered Nanofibrous Materials, edited by SI Guceri, Y. Gogotsi, and V. Kuznetsov (Kluwer Academic Book Publishers, Antalya, Turkey, 2003), (2004) 19.
[133] H. Baker, H. Okamoto, ASM handbook. vol. 3. alloy phase diagrams, ASM International, Materials Park, Ohio 44073-0002, USA, 1992. 501, (1992).
[134] M. Hansen, K. Anderko, H. Salzberg, Constitution of binary alloys, Journal of the Electrochemical Society, 105 (1958) 260C.
[135] M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain, Morphology and crystalline order in catalytic carbons, Carbon, 19 (1981) 217-224.
[136] C.-M. Chen, Y.-M. Dai, J.G. Huang, J.-M. Jehng, Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method, Carbon, 44 (2006) 1808-1820.
[137] J.J. Reilly Jr, R.H. Wiswall Jr, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4, Inorganic chemistry, 7 (1968) 2254-2256.
[138] V. Coon, T. Takeshita, W. Wallace, R. Craig, Rare earth intermetallics as catalysts for the production of hydrocarbons from carbon monoxide and hydrogen, The Journal of Physical Chemistry, 80 (1976) 1878-1879.
[139] K. Soga, H. Imamura, S. Ikeda, HYDROGENATION OF ETHYLENE OVER LaNi5H3. 3, Chemistry Letters, 5 (1976) 1387-1388.
[140] T. Imamoto, T. Mita, M. Yokoyama, Reduction of organic compounds with rare-earth intermetallics containing absorbed hydrogen, The Journal of Organic Chemistry, 52 (1987) 5695-5699.
[141] X. Gao, X. Qin, F. Wu, H. Liu, Y. Lan, S. Fan, H. Yuan, D. Song, P. Shen, Synthesis of carbon nanotubes by catalytic decomposition of methane using LaNi5 hydrogen storage alloy as a catalyst, Chemical Physics Letters, 327 (2000) 271-276.
[142] S. Yi, H. Zhang, L. Pei, Y. Zhu, X. Chen, X. Xue, The electrochemical hydrogen storage of CNTs synthesized by CVD using LaNi5 alloy particles as catalyst and treated with different temperature in nitrogen, Journal of alloys and compounds, 420 (2006) 312-316.
[143] V. Ivanchenko, G. Kobzenko, V. Svechnikov, Phase equilibria in the lanthanum-nickel system, Dopov. Akad. Nauk Ukr. RSR, Ser. A: Fiz.-Tekh. Mat. Nauki;(Ukrainian SSR), 1 (1983).
[144] H. Okamoto, La-Ni (lanthanum-nickel), Journal of Phase Equilibria and Diffusion, 23 (2002) 287.
[145] J.-M. Joubert, J. Charton, A. Percheron-Guégan, Investigation of structural and hydrogen absorption properties in the LaNi5− xPtx–H2 system, Journal of Solid State Chemistry, 173 (2003) 379-386.
[146] J.-M. Joubert, V. Paul-Boncour, F. Cuevas, J. Zhang, M. Latroche, LaNi5 related AB5 compounds: Structure, properties and applications, Journal of Alloys and Compounds, 862 (2021) 158163.
[147] H. Zhang, X. Fu, Y. Chen, S. Yi, S. Li, Y. Zhu, L. Wang, The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst, Physica B: Condensed Matter, 352 (2004) 66-72.
[148] H. Zhang, Y. Chen, S. Li, X. Fu, Y. Zhu, S. Yi, X. Xue, Y. He, Y. Chen, Hydrogen storage for carbon nanotubes synthesized by the pyrolysis method using lanthanum nickel alloy as catalyst, Journal of applied physics, 94 (2003) 6417-6422.
[149] J.A. Rajesh, A. Pandurangan, Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition, Rsc Advances, 4 (2014) 20554-20566.
[150] P. Ciambelli, L. Arurault, M. Sarno, S. Fontorbes, C. Leone, L. Datas, D. Sannino, P. Lenormand, S.L.B. Du Plouy, Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation, Nanotechnology, 22 (2011) 265613.
[151] K. Gschneidner, F. Calderwood, The Al-Y (Aluminum-Yttrium) System, Bulletin of Alloy Phase Diagrams, 10 (1989) 44-47.
[152] K. Rana, G. Kucukayan-Dogu, E. Bengu, Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties, Applied surface science, 258 (2012) 7112-7117.
[153] H.U. Rashid, K. Yu, M.N. Umar, M.N. Anjum, K. Khan, N. Ahmad, M.T. Jan, Catalyst role in chemical vapor deposition (CVD) process: A review, Rev. Adv. Mater. Sci, 40 (2015) 235-248.
[154] F. Rossella, C. Soldano, V. Bellani, M. Tommasini, Metal‐Filled Carbon Nanotubes as a Novel Class of Photothermal Nanomaterials, Advanced Materials, 24 (2012) 2453-2458.
[155] X. Gao, Y. Zhang, X. Chen, G. Pan, J. Yan, F. Wu, H. Yuan, D. Song, Carbon nanotubes filled with metallic nanowires, Carbon, 42 (2004) 47-52.
[156] J. Shelton, H. Patil, J. Blakely, Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition, Surface Science, 43 (1974) 493-520.
[157] M. Eizenberg, J. Blakely, Carbon monolayer phase condensation on Ni (111), Surface Science, 82 (1979) 228-236.
[158] S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science, 265 (1994) 635-639.
[159] A. Koos, R. Ehlich, Z. Horvath, Z. Osvath, J. Gyulai, J. Nagy, L. Biró, STM and AFM investigation of coiled carbon nanotubes produced by laser evaporation of fullerene, Materials science and Engineering: C, 23 (2003) 275-278.
[160] J. Bai, A.-L. Hamon, A. Marraud, B. Jouffrey, V. Zymla, Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method, Chemical physics letters, 365 (2002) 184-188.
[161] A. Ajayaghosh, C. Vijayakumar, R. Varghese, S.J. George, Cholesterol‐Aided Supramolecular Control over Chromophore Packing: Twisted and Coiled Helices with Distinct Optical, Chiroptical, and Morphological Features, Angewandte Chemie International Edition, 45 (2006) 456-460.
[162] R. Ivanov, V. Mikli, J. Kübarsepp, I. Hussainova, Direct CVD growth of multi-layered graphene closed shells around alumina nanofibers, Key Engineering Materials, 674 (2016) 77-80.
[163] D. Fejes, K. Hernádi, A review of the properties and CVD synthesis of coiled carbon nanotubes, Materials, 3 (2010) 2618-2642.
[164] M.J. Hanus, A.T. Harris, Synthesis, characterisation and applications of coiled carbon nanotubes, Journal of nanoscience and nanotechnology, 10 (2010) 2261-2283.
[165] D. Fejes, Z.P. Popović, M. Raffai, Z. Balogh, M. Damnjanović, I. Milošević, K. Hernadi, Synthesis, model and stability of helically coiled carbon nanotubes, ECS Solid State Letters, 2 (2012) M21.
[166] A. Szabó, A. Fonseca, J.B. Nagy, P. Lambin, L.P. Biró, Structural origin of coiling in coiled carbon nanotubes, Carbon, 43 (2005) 1628-1633.
[167] H. Hou, Z. Jun, F. Weller, A. Greiner, Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe (CO) 5 as floating catalyst precursor, Chemistry of Materials, 15 (2003) 3170-3175.
[168] T. Luo, J. Liu, L. Chen, S. Zeng, Y. Qian, Synthesis of helically coiled carbon nanotubes by reducing ethyl ether with metallic zinc, Carbon, 43 (2005) 755-759.
[169] V. Bajpai, L. Dai, T. Ohashi, Large-scale synthesis of perpendicularly aligned helical carbon nanotubes, Journal of the American Chemical Society, 126 (2004) 5070-5071.
[170] S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga, Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics, Applied Physics Letters, 56 (1990) 321-323.
[171] S. Yang, M. Hasegawa, X. Chen, S. Motojima, Synthesis and morphology of carbon microcoils produced using methane as a carbon source, Carbon, 7 (2007) 1592-1595.
[172] L. Pan, M. Zhang, Y. Nakayama, Growth mechanism of carbon nanocoils, Journal of applied physics, 91 (2002) 10058-10061.
[173] M.Z.M. Zhang, Y.N.Y. Nakayama, L.P.L. Pan, Synthesis of carbon tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst, Japanese Journal of Applied Physics, 39 (2000) L1242.
[174] L.P.L. Pan, T.H.T. Hayashida, M.Z.M. Zhang, Y.N.Y. Nakayama, Field emission properties of carbon tubule nanocoils, Japanese Journal of Applied Physics, 40 (2001) L235.
[175] D. Shindo, T. Oikawa, D. Shindo, T. Oikawa, Energy dispersive x-ray spectroscopy, Analytical electron microscopy for materials science, (2002) 81-102.
[176] G. Liang, J. Huot, R. Schulz, Hydrogen storage properties of the mechanically alloyed LaNi5-based materials, Journal of alloys and compounds, 320 (2001) 133-139.
[177] J. Cantrell, T. Beiter, R. Bowman Jr, Crystal structure and hydriding behavior of LaNi5− ySny, Journal of alloys and compounds, 207 (1994) 372-376.
[178] Y. Nakamura, K. Oguro, I. Uehara, E. Akiba, X-ray diffraction peak broadening and lattice strain in LaNi5-based alloys, Journal of alloys and compounds, 298 (2000) 138-145.
[179] Y. Nakamura, K. Oguro, I. Uehara, E. Akiba, X-ray diffraction peak broadening and degradation in LaNi5-based alloys, International journal of hydrogen energy, 25 (2000) 531-537.
[180] A.A. Yadav, V.C. Lokhande, R.N. Bulakhe, C.D. Lokhande, Amperometric CO 2 gas sensor based on interconnected web-like nanoparticles of La 2 O 3 synthesized by ultrasonic spray pyrolysis, Microchimica Acta, 184 (2017) 3713-3720.
[181] Z. Fu, J. Hu, W. Hu, S. Yang, Y. Luo, Quantitative analysis of Ni2+/Ni3+ in Li [NixMnyCoz] O2 cathode materials: Non-linear least-squares fitting of XPS spectra, Applied Surface Science, 441 (2018) 1048-1056.
[182] D. Dang, H. Zou, Z.a. Xiong, S. Hou, T. Shu, H. Nan, X. Zeng, J. Zeng, S. Liao, High-performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a Pt shell layer on carbon-supported Pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach, ACS Catalysis, 5 (2015) 4318-4324.
[183] H.U. Modekwe, M.A. Mamo, K. Moothi, M.O. Daramola, Effect of different catalyst supports on the quality, yield and morphology of carbon nanotubes produced from waste polypropylene plastics, Catalysts, 11 (2021) 692.
[184] F. Yuan, H. Ryu, The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell, Nanotechnology, 15 (2004) S596.
[185] Y.-H. Duan, B. Huang, Y. Sun, M.-J. Peng, S.-G. Zhou, The Phase Stability, Thermodynamics Properties and Electronic Structures of L12-Type Al3Sc and Al3Y under High Pressures, Chinese Physics Letters, 31 (2014) 088101.
[186] N. Xiaofeng, H. Zhiwei, W. Han, H. Lei, W. Baojian, Structure, Elastic Properties, Thermodynamic and Electronic Properties of Al-Y Alloy Under Pressure from First-principles Calculations, Rare Metal Materials and Engineering, 47 (2018) 1325-1332.
[187] P. Snijders, L. Jeurgens, W. Sloof, Structure of thin aluminium-oxide films determined from valence band spectra measured using XPS, Surface science, 496 (2002) 97-109.
[188] G. Ingo, E. Paparazzo, O. Bagnarelli, N. Zacchetti, XPS studies on cerium, zirconium and yttrium valence states in plasma‐sprayed coatings, Surface and Interface Analysis, 16 (1990) 515-519.
[189] Y. Abe, K. Kato, M. Kawamura, K. Sasaki, Rhodium and rhodium oxide thin films characterized by XPS, Surface Science Spectra, 8 (2001) 117-125.
[190] L.S. Kibis, A.I. Stadnichenko, S.V. Koscheev, V.I. Zaikovskii, A.I. Boronin, XPS study of nanostructured rhodium oxide film comprising Rh4+ species, The Journal of Physical Chemistry C, 120 (2016) 19142-19150.
[191] Z. Fathi, R.-A.K. Nejad, H. Mahmoodzadeh, T.N. Satari, Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.), Journal of plant protection research, (2017).
[192] H. Firas, F. Ayad, H. Falah, Behavior of X-Ray Analysis of Carbon Nanotubes'', DOI: http://dx. doi. org/10.5772/intechopen, 85156 (2019).
[193] M. Xing, J. Mohapatra, F. Zeng, J. Ping Liu, Magnetic properties of nickel carbide nanoparticles with enhanced coercivity, AIP Advances, 8 (2018).
[194] F. Zhang, Y. Yang, W. Cao, S. Chen, K. Wu, C.Y. Chang, Commercial Alloy Phase Diagrams and Their Industrial Applications, ASM Handbook, 22 (2010).
[195] L. Ni, K. Kuroda, L.-P. Zhou, K. Ohta, K. Matsuishi, J. Nakamura, Decomposition of metal carbides as an elementary step of carbon nanotube synthesis, Carbon, 47 (2009) 3054-3062.
[196] J. Cheng, X. Zhang, Y. Ye, Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes, Journal of Solid State Chemistry, 179 (2006) 91-95.
[197] B.P. Singh, S. Samal, S. Nayak, S.M. Majhi, L. Besra, S. Bhattacharjee, The production of a multi-walled carbon nanotube/hexamethylene diisocyanate nanocomposite coating on copper by electrophoretic deposition, Surface and Coatings Technology, 206 (2011) 1319-1326.
[198] G.J.H. Melvin, Q.-Q. Ni, Y. Suzuki, T. Natsuki, Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites, Journal of Materials Science, 49 (2014) 5199-5207.
[199] J.-M. Feng, Y.-J. Dai, Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method, Nanoscale, 5 (2013) 4422-4426.
[200] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Physics reports, 409 (2005) 47-99.
[201] B.-J. Kim, J.-P. Kim, J.-S. Park, Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method, Nanoscale research letters, 9 (2014) 1-6.
[202] C.J. Lee, J. Park, A.Y. Jeong, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chemical Physics Letters, 360 (2002) 250-255.
[203] M.H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti, Synthesis of carbon nanotubes with and without catalyst particles, Nanoscale research letters, 6 (2011) 1-9.
[204] H. Guo, Y. Chen, H. Ping, L. Wang, D.-L. Peng, One-pot synthesis of hexagonal and triangular nickel–copper alloy nanoplates and their magnetic and catalytic properties, Journal of Materials Chemistry, 22 (2012) 8336-8344.
[205] W. Maiaugree, S. Lowpa, M. Towannang, P. Rutphonsan, A. Tangtrakarn, S. Pimanpang, P. Maiaugree, N. Ratchapolthavisin, W. Sang-Aroon, W. Jarernboon, A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste, Scientific reports, 5 (2015) 15230.
[206] T. Maruyama, A. Kozawa, T. Saida, S. Naritsuka, S. Iijima, Low temperature growth of single-walled carbon nanotubes from Rh catalysts, Carbon, 116 (2017) 128-132.
[207] Y. Liu, C. Pan, J. Wang, Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames, Journal of materials science, 39 (2004) 1091-1094.
[208] S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. Kalenczuk, Characterization of carbon nanotubes by Raman spectroscopy, Materials Science-Poland, 26 (2008) 433-441.
[209] P. Castrucci, M. Scarselli, M. De Crescenzi, M. El Khakani, F. Rosei, N. Braidy, J.-H. Yi, Effect of coiling on the electronic properties along single-wall carbon nanotubes, Applied Physics Letters, 85 (2004) 3857-3859.
[210] K.T. Lau, M. Lu, D. Hui, Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures, Composites Part B: Engineering, 37 (2006) 437-448.
[211] W. Davis, R. Slawson, G. Rigby, An unusual form of carbon, Nature, 171 (1953) 756-756.
[212] S. Motojima, Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition, Journal of Applied Physics, 85 (1999) 3919-3921.
[213] X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, Y. Nakayama, Mechanics of a carbon nanocoil, Nano Letters, 3 (2003) 1299-1304.
[214] Y. Zhao, J. Wang, H. Huang, H. Zhang, T. Cong, D. Zhang, N. Wen, Y. Zhang, Z. Fan, L. Pan, Catalytic anisotropy induced by multi-particles for growth of carbon nanocoils, Carbon, 166 (2020) 101-112.
[215] C. Kuzuya, W. In‐Hwang, S. Hirako, Y. Hishikawa, S. Motojima, Preparation, morphology, and growth mechanism of carbon nanocoils, Chemical Vapor Deposition, 8 (2002) 57-62.
[216] N. Rodriguez, A review of catalytically grown carbon nanofibers, Journal of materials research, 8 (1993) 3233-3250.
[217] A. Magrez, J.W. Seo, R. Smajda, M. Mionić, L. Forró, Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth, Materials, 3 (2010) 4871-4891.
[218] F. Taleshi, Evaluation of new processes to achieve a high yield of carbon nanotubes by CVD method, International Nano Letters, 2 (2012) 1-5.
[219] M.J. Bronikowski, CVD growth of carbon nanotube bundle arrays, Carbon, 44 (2006) 2822-2832.
[220] A. Leonhardt, S. Hampel, C. Mueller, I. Moench, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, B. Buechner, Synthesis, properties, and applications of ferromagnetic‐filled carbon nanotubes, Chemical vapor deposition, 12 (2006) 380-387.
[221] M. Nagatsu, T. Yoshida, M. Mesko, A. Ogino, T. Matsuda, T. Tanaka, H. Tatsuoka, K. Murakami, Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles, Carbon, 44 (2006) 3336-3341.
[222] H. Kim, S.H. Moon, Chemical vapor deposition of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes for use as fuel-cell electrodes, Carbon, 49 (2011) 1491-1501.
[223] T. Onoe, S. Iwamoto, M. Inoue, Synthesis and activity of the Pt catalyst supported on CNT, Catalysis Communications, 8 (2007) 701-706.
[224] K.A. Shah, F.A. Najar, T. Sharda, K. Sreenivas, Synthesis of multi-walled carbon nanotubes by thermal CVD technique on Pt–W–MgO catalyst, Journal of Taibah University for Science, 12 (2018) 230-234.
[225] A. Fonseca, K. Hernadi, J. Nagy, P. Lambin, A. Lucas, Model structure of perfectly graphitizable coiled carbon nanotubes, Carbon, 33 (1995) 1759-1775.
[226] Y. Wen, Z. Shen, Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis, Carbon, 39 (2001) 2369-2374.
[227] C. Emmenegger, J.-M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach, Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism, Carbon, 41 (2003) 539-547.
[228] L. Ni, K. Kuroda, L.-P. Zhou, T. Kizuka, K. Ohta, K. Matsuishi, J. Nakamura, Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts, Carbon, 44 (2006) 2265-2272.
[229] C.E. Baddour, C. Briens, Carbon nanotube synthesis: a review, International journal of chemical reactor engineering, 3 (2005).
[230] E. Borowiak-Palen, M. Rümmeli, Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes, Superlattices and Microstructures, 46 (2009) 374-378.
[231] X. Zhang, X. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, The texture of catalytically grown coil-shaped carbon nanotubules, Europhysics Letters, 27 (1994) 141.
[232] M. Lu, W.-M. Liu, X.-Y. Guo, H.-L. Li, Coiled carbon nanotubes growth via reduced-pressure catalytic chemical vapor deposition, Carbon, 42 (2004) 805-811.
[233] V.M. Krishna, T. Somanathan, E. Manikandan, A. Umar, M. Maaza, Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst, Applied Nanoscience, 8 (2018) 105-113.
[234] J. Bao, Q. Zhou, J. Hong, Z. Xu, Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes, Applied physics letters, 81 (2002) 4592-4594.
[235] T. Von Waldkirch, P. Zürcher, Surface segregation in LaNi5 induced by oxygen, Applied Physics Letters, 33 (1978) 689-691.
[236] W. Wallace, R. Karlicek, H. Imamura, Mechanism of hydrogen absorption by lanthanum-nickel (LaNi5), Journal of Physical Chemistry, 83 (1979) 1708-1712.
[237] G. Xu, B. Chen, H. Shiki, T. Katsumata, H. Takikawa, T. Sakakibara, S. Itoh, T. Ina, Parametric study on growth of carbon nanocoil by catalytic chemical vapor deposition, Japanese Journal of Applied Physics, 44 (2005) 1569.
[238] B. Liu, L. Liu, X. Liu, M. Liu, Y. Xiao, Variation of crystal structure in nickel nanoparticles filled in carbon nanotubes, Materials Science and Technology, 28 (2012) 1345-1348.
[239] L. Tai, B. Hang, N. Thuy, T. Hien, Magnetic properties of LaNi5-based compounds, Journal of magnetism and magnetic materials, 262 (2003) 485-489.
[240] M. Han, W. Zhang, C. Gao, Y. Liang, Z. Xu, J. Zhu, J. He, Hollow nickel microspheres covered with oriented carbon nanotubes and its magnetic property, Carbon, 44 (2006) 211-215.
[241] M.A. Zeeshan, K. Shou, S. Pané, E. Pellicer, J. Sort, K.M. Sivaraman, M. Baró, B.J. Nelson, Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes, Nanotechnology, 22 (2011) 275713.
[242] T. Sagara, S. Kurumi, K. Suzuki, Growth of linear Ni-filled carbon nanotubes by local arc discharge in liquid ethanol, Applied surface science, 292 (2014) 39-43.
[243] P. Singjai, K. Wongwigkarn, Y. Laosiritaworn, R. Yimnirun, S. Maensiri, Carbon encapsulated nickel nanoparticles synthesized by a modified alcohol catalytic chemical vapor deposition method, Current Applied Physics, 7 (2007) 662-666.
[244] J. Heremans, C. Olk, D. Morelli, Magnetic susceptibility of carbon structures, Physical review B, 49 (1994) 15122.
[245] S. Bandow, S. Numao, M. Jinno, K. Hirahara, S. Iijima, Correlation between diamagnetic susceptibility and electron spin resonance feature for various multiwalled carbon nanotubes, Applied Physics A, 87 (2007) 13-16.
[246] V. Likodimos, S. Glenis, N. Guskos, C. Lin, Magnetic and electronic properties of multiwall carbon nanotubes, Physical Review B, 68 (2003) 045417.
[247] O. Chauvet, L. Forro, W. Bacsa, D. Ugarte, B. Doudin, W.A. de Heer, Magnetic anisotropies of aligned carbon nanotubes, Physical Review B, 52 (1995) R6963.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊