跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游松達
研究生(外文):YOU, SONG-DA
論文名稱:E-band(60-90 GHz)間隙波導快接結構設計與分析
論文名稱(外文):Design and Analysis of Quick Connector Structure for E-band (60-90 GHz) Gap Waveguide
指導教授:孫卓勳孫卓勳引用關係陳冠宇陳冠宇引用關係
指導教授(外文):SUN, JWO-SHIUNCHEN, GUAN-YU
口試委員:孫卓勳陳冠宇賴柏洲王多柏
口試委員(外文):SUN, JWO-SHIUNCHEN, GUAN-YULAI, BO-JHOUWANG, DUO-BO
口試日期:2024-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:31
中文關鍵詞:E-band溝槽間隙波導非接觸式波導法蘭元件參數設計
外文關鍵詞:E-bandGroove gap waveguideContactless waveguide flangeComponent parameter design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討溝槽間隙波導(Groove Gap Waveguide, GGWG)中金屬柱的設計物理參數,包括空格間距、金屬柱橫切面長度、金屬柱高度以及頂部的氣隙。考慮到高頻波導的製作成本昂貴且尺寸較小,本研究採用了模擬方法進行研究。此篇論文針對E-band進行了溝槽間隙波導的設計,同時本研究在設計與模擬溝槽間隙波導的理論上,參考了非接觸式波導法蘭(Contactless Waveguide Flange, CWGF)技術。
在模擬軟體中,常見的是使用平整的圓形或矩形面來設計波導管和法蘭,但在現實中的製造和量測往往難以完全貼合這些平整面,導致測量誤差和安裝不便。因此,本研究提出了一種在兩波導之間引入非接觸式波導法蘭的方法,適合特定頻段使用。這種設計不僅避免了在量測和更換波導時,需要在各個波導接面使用多根螺絲來固定或拆卸元件的繁瑣工作,而且能夠實現低損耗,並模擬出接近真實量測的結果。這樣的非接觸式波導法蘭設計簡化了安裝和測量過程,提高了測量結果的準確性和可靠性,對於波導系統的應用和研究具有重要意義。

This study aims to investigate the physical design parameters of metallic posts in Groove Gap Waveguides (GGWG), including slot spacing, cross-sectional length of the metallic posts, post height, and the air gap at the top. Considering the high production costs and small dimensions of high-frequency waveguides, this research employs simulation methods for analysis. This paper focuses on the design of GGWGs for the E-band. Additionally, in the theoretical design and simulation of GGWGs, this study references the Contactless Waveguide Flange (CWGF) technology.
In simulation software, it is common to use flat circular or rectangular surfaces to design waveguide tubes and flanges. However, in practice, manufacturing and measurement often find it difficult to achieve perfect alignment with these flat surfaces, leading to measurement errors and installation inconveniences. Therefore, this study proposes a method of introducing a contactless waveguide flange between two waveguides, suitable for specific frequency bands. This design not only eliminates the cumbersome task of using multiple screws to fix or remove components at each waveguide interface during measurement and replacement but also achieves low loss and simulates results that closely approximate real-world measurements. This contactless waveguide flange design simplifies the installation and measurement process, improves the accuracy and reliability of measurement results, and is of significant importance for the application and research of waveguide systems.

摘要……………………………………………………………………………………………..i
英文摘要………………………………………………………………………………………ii
謝誌……………………………………………………………………………………………iv
目錄…………………………………………………………………………………………….v
圖目錄………………………………………………………………………………………..vii
表目錄…………………………………………………………………………………………ix
第一章 緒論 1
1.1 研究動機與研究近況 1
第二章 設計理論 3
2.1 E-band架構設計流程 3
2.2 非接觸式波導法蘭 5
2.3 溝槽間隙波導 6
第三章 設計方法 8
3.1 溝槽間隙波導設計參數整合 8
3.2 非接觸式波導法蘭設計參數整合 10
第四章 模擬結果分析 12
4.1 最佳化溝槽間隙波導之設計參數 12
4.1.1 金屬柱排數、列數改變 13
4.1.2 金屬柱截面積之邊長改變 16
4.1.3 金屬柱截面積之形狀改變 18
4.1.4 最終溝槽間隙波導設計參數 19
4.2 最佳化非接觸式波導法蘭之設計參數 20
4.2.1 金屬柱截面積之邊長改變 20
4.2.2 金屬柱高度之長度改變 20
4.2.3 最終溝槽間隙波導設計參數 22
4.3 高仿真相關市售E-band連接波導模擬 23
4.3.1 同軸到波導轉換器模擬 23
4.3.2 WR12波導管模擬 24
4.4 E-band波導整合 26
第五章 結論與未來展望 28
5.1 結論 28
5.2 未來展望 29
參考文獻 30



[ 1 ] Mousa, B. J. (2022), " Millimetre-Wave Components Based on Groove Gap Waveguide Technology: Design and Development, " University of Liverpool.
[ 2 ] A. Farahbakhsh, D. Zarifi and A. U. Zaman, "60-GHz Groove Gap Waveguide Based Wideband H-Plane Power Dividers and Transitions: For Use in High-Gain Slot Array Antenna," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4111-4121, June 2017
[ 3 ] D. Zarifi and A. Ashrafian, "A Broadband Transition From Microstrip to Groove Gap Waveguide For Ka-Band Applications," 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020, pp. 1-3, March 2020
[ 4 ] A. U. Zaman, P. -S. Kildal and A. A. Kishk, "Narrow-Band Microwave Filter Using High-Q Groove Gap Waveguide Resonators With Manufacturing Flexibility and No Sidewalls," IEEE Transactions on Components, Packaging and Manufacturing
Technology, vol. 2, no. 11, pp. 1882-1889, July 2012
[ 5 ] N. Memeletzoglou and E. Rajo-Iglesias, "Design of an array of stacked groove gap waveguide leaky-wave antennas in the Ka band," 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, pp. 1-5, March 2020
[ 6 ] G. Tahir and A. Hassan, "Design Of Unit Cells for Groove Gap Waveguide at Millimeter Wave Spectrum," 2022 Third International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, pp. 1-5, November 2022
[ 7 ] M. Vukomanovic, J. -L. Vazquez-Roy, O. Quevedo-Teruel, E. Rajo-Iglesias and Z. Sipus, "Gap Waveguide Leaky-Wave Antenna," IEEE Transactions on Antennas and Propagation, vol. 64, no. 5, pp. 2055-2060, March 2016
[ 8 ] T. S. Amin and A. A. Kishk, "Contactless and Flangeless Pipe Contact for Standard Waveguides," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, July 2020, pp. 965-966
[ 9 ] X. Chen, W. Cui, Y. He and D. Sun, "Low Passive-Intermodulation Contactless Waveguide Adapter Based on Gap Waveguide Technology," 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, April 2019, pp. 1-2.
[10] D. Sun and J. Xu, "Real Time Rotatable Waveguide Twist Using Contactless Stacked Air-Gapped Waveguides," IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 215-217, March 2017
[11] E. Pucci and P. -S. Kildal, "Contactless non-leaking waveguide flange realized by bed of nails for millimeter wave applications," 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, March 2012, pp. 3533-3536
[12] "Contactless Waveguide Flange & MMW-THz Test Setupns” ERAVANT (2021 June) [Online] , Available: https://sftp.eravant.com/content/resources/Eravant-Contactless-
Waveguide-Flange-and-Its-mmW-THz-Test-Setup-Applications.pdf
[13]M. Rezaee, A. U. Zaman and P. -S. Kildal, "A groove gap waveguide iris filter for V-band application," 2015 23rd Iranian Conference on Electrical Engineering, Tehran, Iran, 2015, pp. 462-465, May 2015
[14] Y. Shi, J. Zhang, S. Zeng and M. Zhou, "Novel W-Band Millimeter-Wave Transition From Microstrip Line to Groove Gap Waveguide for MMIC Integration and Antenna Application," IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 3172-3176, March 2018
[15] M. A. Mahdian and M. Nikoufard, "THz Multimode Interference Power Divider Based on Groove Gap Waveguide Configuration," IEEE Transactions on Nanotechnology, vol. 21, pp. 259-265, May 2022

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top