跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 07:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉梓敬
研究生(外文):YEH, TZU-CHING
論文名稱:互補式低功耗Class-C 壓控振盪器與低雜訊之次取樣鎖相迴路
論文名稱(外文):A Complementary Low-Power Class-C VCO and Low-Noise Sub-Sampling Phase-Locked Loop
指導教授:王多柏
指導教授(外文):WANG, TO-PO
口試委員:蕭玉真孫卓勳黃育賢王多柏
口試委員(外文):XIAO, YU-CHENSUN, JWO-SHIUNHWANG, YUH-SHYANWANG, TO-PO
口試日期:2024-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:56
中文關鍵詞:低雜訊低功耗壓控振盪器次取樣鎖相迴路
外文關鍵詞:low-noiselow-powervcosub-sampling phase locked loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著物聯網技術的進步以及普及,有著多樣化的應用及產品,因應而來的需求便是無線及有線傳輸,因此晶片內的收發器便扮演著不可或缺的角色。在大多數的收發系統內,頻率合成器提供訊號的參考頻率。本篇論文中將針對上述之議題提出無線及有線架構的核心電路設計。
第一個部分是雙導通Class-C壓控震盪器(VCO),使用台積電0.18微米Mixed Single/RF製程實現。這個振盪器架構透過雙導通架構降低雜訊,並將MOS的源端加上衰減電容,使得電路能夠減少元件的寄生電容,從而實現高頻應用。量測結果顯示,在VDD=1.2V時,振盪頻率為10 GHz,在1 MHz處的相位雜訊為-93.5 dBc/Hz,總直流功耗為4.4 mW。
第二部分為10 GHz低雜訊次取樣鎖相迴路(SSPLL),同樣使用台積電0.18微米Mixed Single/RF製程製作。該架構採用單一電流泵設計。為了實現低雜訊,整體的功耗為15.2 mW。參考頻率為40 MHz,輸出頻率對參考頻率的功率比為-37.4 dBc,相位雜訊在1 MHz 的偏移處為-108 dBc/Hz,在 10 MHz 的偏移處的相位雜訊為-120 dBc/Hz。

With the advancement and proliferation of IoT technology, a diverse array of applications and products have emerged, leading to increased demand for both wireless and wired transmission. Transceivers within chips thus play an indispensable role in meeting these demands. In most transceiver systems, frequency synthesizers provide the reference frequency for the signal. This thesis addresses the core circuit design for wireless and wired architectures in response to the aforementioned issues.
The first part discusses a dual-conduction Class-C voltage-controlled oscillator (VCO), implemented using TSMC 0.18 μm Mixed Single/RF process. This oscillator architecture reduces noise through a dual-conduction design and incorporates attenuation capacitors at the source of the MOS transistors to reduce parasitic capacitance, enabling high-frequency applications. Measurement results show that at VDD=1.2V, the oscillation frequency is 10 GHz, the phase noise at 1 MHz is -93.5 dBc/Hz, and the total DC power consumption is 4.4 mW.
The second part focuses on a 10 GHz low-noise subsampling phase-locked loop (SSPLL), also fabricated using TSMC 0.18 μm Mixed Single/RF process. This architecture employs a single charge pump design. To achieve low noise, the total power consumption is 15.2 mW. With a reference frequency of 40 MHz, the power ratio of the output frequency to the reference frequency is -37.4 dBc. The phase noise is -108 dBc/Hz at a 1 MHz offset and -120 dBc/Hz at a 10 MHz offset.

摘要 i
ABSTRACT ii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
第二章 低功耗雙導通Class-C VCO 2
2.1 振盪器效能參數簡介 2
2.1.1 相位雜訊 2
2.1.2 相位雜訊對系統的影響 3
2.1.3 相位雜訊在時域的關係 3
2.1.4 調頻範圍與輸出功率 4
2.1.5 負載效應 5
2.2 基本振盪器 6
2.3 電路架構 6
2.4 電路設計與實現 8
2.5 模擬與量測 14
2.5.1 量測結果 16
2.5.2 結果討論 21
第三章 鎖相迴路與次取樣技術概論 22
3.1 Type-I鎖相迴路 22
3.2 電流泵鎖相迴路 23
3.2.1 相位頻率檢測器及電流泵 24
3.2.2 迴路濾波器 26
3.2.3 除頻器 28
3.3 鎖相迴路的線性模型 29
3.3.1 相位頻率檢測器和電流泵的線性模型 29
3.3.2 低通濾波器的線性模型 30
3.3.3 壓控振盪器的線性模型 30
3.3.4 鎖相迴路的穩定性分析 30
3.4 次取樣鎖相迴路 32
3.4.1 頻率鎖定迴路的操作 33
3.4.2 核心迴路的操作 33
3.4.3 次取樣鎖相迴路和電流泵鎖相迴路的雜訊分析比較 34
3.5 鎖相迴路的設計流程 35
第四章 次取樣鎖相迴路硬體設計與實現 36
4.1 本論文次取樣鎖相迴路架構 36
4.2 各個子電路架構 36
4.2.1 頻率檢測器與死區產生 36
4.2.2 脈衝產生器 37
4.2.3 次取樣相位偵測器 38
4.2.4 電流泵 39
4.2.5 壓控振盪器 42
4.2.6 輸出級 43
4.2.7 訊號時序 44
4.3 迴路系統及雜訊分析 46
4.4 電路特性模擬 48
4.4.1 雜訊分析 49
第五章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 54
參考文獻 55


[1]Behzad Razavi, RF Microelectronics, second edition, Prentice Hall, Inc., 2012.
[2]李泰成(譯),類比CMOS積體電路設計,東華書局, 2017.
[3]Razavi, Behzad. Design of CMOS phase-locked loops: from circuit level to architecture level. Cambridge University Press, 2020.
[4]Banerjee, Dean. PLL performance, simulation, and design 5th edition. Sirirajmedj Com, 2017.
[5]Kester, Walt. "Converting oscillator phase noise to time jitter." Tutorial MT-008, Analog Devices, 2009.
[6]M. R. Khanzadi, D. Kuylenstierna, A. Panahi, T. Eriksson and H. Zirath, "Calculation of the Performance of Communication Systems From Measured Oscillator Phase Noise," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 5, pp. 1553-1565, May 2014.
[7]A. Mazzanti and P. Andreani, "Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise," in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
[8]K. Okada, Y. Nomiyama, R. Murakami and A. Matsuzawa, "A 0.114-mW dual-conduction class-C CMOS VCO with 0.2-V power supply," 2009 Symposium on VLSI Circuits, Kyoto, Japan, 2009, pp. 228-229.
[9]P. Andreani, Xiaoyan Wang, L. Vandi and A. Fard, "A study of phase noise in colpitts and LC-tank CMOS oscillators," in IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1107-1118, May 2005.
[10]L. Zhang and A. Niknejad, "A 480-Multiplication-Factor 13.2-to-17.3GHz Sub-Sampling PLL Achieving 6.6mW Power and -248.1 dB FoM Using a Proportionally Divided Charge Pump," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 1-3.
[11]X. Gao, E. Klumperink and B. Nauta, "Sub-sampling PLL techniques," 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 2015, pp. 1-8.
[12]J. Luo, L. Zhang, L. Zhang, Y. Wang and Z. Yu, "Behavioral Analysis and Optimization of CMOS CML Dividers for Millimeter-Wave Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 3, pp. 256-260, March 2015.
[13]M. -D. Wei, R. Negra, S. -F. Chang and C. -S. Chen, "Wideband complementary CMOS VCO with capacitive-source-degeneration technique," IEEE EUROCON 2017 -17th International Conference on Smart Technologies, Ohrid, Macedonia, 2017, pp. 287-291 .
[14]M. -A. Chung, P. -R. Huang and Y. -F. Kuo, "Low-Power 14GHz LC-VCO in 180nm CMOS Technology," 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII ), Hualien, Taiwan, 2022, pp. 60-62.
[15]J. S. Gaggatur, "On-chip Temperature Compensated 2.5GHz to 10GHz Multi-band LC-VCO Phase Locked Loop for Wireline Applications," 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 2019, pp. 1-5.
[16]X. Gui, R. Tang, Y. Zhang, D. Li and L. Geng, "A Voltage-Controlled Ring Oscillator With VCO-Gain Variation Compensation," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 3, pp. 288-291, March 2020.
[17]Y. C. Qian, Y. Y. Chao and S. I. Liu, "A Low-Jitter Sub-Sampling PLL With a Sub-Sampling DLL," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 269-273, Feb. 2022.
[18]K. Sogo, A. Toya and T. Kikkawa, "A ring-VCO-based sub-sampling PLL CMOS circuit with −119 dBc/Hz phase noise and 0.73 ps jitter," 2012 Proceedings of the ESSCIRC (ESSCIRC), Bordeaux, France, 2012 , pp. 253-256.
[19]D. Liao, F. F. Dai, B. Nauta and E. A. M. Klumperink, "A 2.4-GHz 16-Phase Sub-Sampling Fractional-N PLL With Robust Soft Loop Switching," in IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 715-727, March 2018.
[20]C.W. Chang, C. P. Chen, A 0.016mm2 Sub-Sampling PLL with Capacitor Multiplier Technique, Master Thesis, National Taiwan University,Graduate Institute of Electronics Engineering, 2019.

電子全文 電子全文(網際網路公開日期:20290805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊