[1] R. S. Popovic, Hall Effect Devices, New York: IOP Publishing, 1991, pp.55-61.
[2] S. M. Sze and K. K. Ng, Physics of semiconductor devices, New Jersey: Wiley Interscience, 2006, pp. 758-762.
[3] H. P. Baltes and R. S. Popovic, "Integrated semiconductor magnetic field sensors," Proceedings of the IEEE, vol. 74, no. 8, 1986, pp. 1107-1132.
[4] R. S. Popovic, J. A. Flanagan and P. A. Besse, "The future of magnetic sensors," Sensors and Actuators, vol. 56, no. 1-2, 1996, pp. 39-55.
[5] B. Janossy, Y. Haddab, J. M. Villiot and R. S. Popovic, "Hot carrier Hall devices in CMOS technology," Sensors and Actuators, vol. 71, no. 3, 1998, pp. 172-178.
[6] C. Leepattarapongpan, T. Phetchakul, N. Penpondee, P. Pengpad, E. Chaowicharat, C. Hruanun and A. Poyai, "magnetotransistor based on the carrier recombination—Deflection effect," IEEE Sensors Journal, vol. 10, no. 2, 2010, pp. 294-299.
[7] P. Malcovati, R. Castagnetti, F. Maloberti and H. Baltes, "A magnetic sensor with current-controlled sensitivity and resolution," Sensors and Actuators, vol. 46, no. 1-3, 1995, pp. 284-288.
[8] B. Zhang, C. E. Korman and M. E. Zaghloul, "circular MAGFET design and SNR optimization for magnetic bead detection," IEEE Transactions on Magnetics, vol. 48, no. 11, 2012, pp. 3815-3854.
[9] A. Bernieri, G. Betta, L. Ferrigno and M. Laracca, "Improving Performance of GMR Sensors," IEEE Sensors Journal, vol. 13, no. 11, 2013, pp. 4513-4521.
[10] R. Wu, J. H. Huijsing and K. A. A. Makinwa, "A current-Feedback Instrumentation Amplifier with a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error," IEEE J. Solid-State Circuits, vol. 46, no. 12, Dec. 2011
[11] Q. Fan, F. Sebastiano, J. H. Huijsing and K. A. A. Makinwa, "A 1.8 μ W 60 nV/√ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes," IEEE Journal of Solid-State Circuits, vol. 46, no. 7, 2011, pp. 1534-1543.
[12] C. C. Tu, K. C. Chen, T. Y. Wu and T. H. Lin, "An Area-efficient Wideband CMOS Hall Sensor System for Camera Autofocus Systems," IEEE Asian Solid-State Circuits Conference(A-SSCC), Toyama, 2016, pp. 33-36
[13] S. Chauhan and L. M. Saini, "Low Power and Low Noise Instrumentation Amplifier," Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp. 14-15.
[14] A. Bakker, K. Thiele and J. H. Huijsing, "A CMOS nested-chopper instrumentation amplifier with 100-nV offset," IEE Journal of Solid-State Circuits, vol. 35, no. 12, 2000, pp. 1877-1883.
[15] R. Wu, J. H. Huijsing and K. A. A. Makinwa, "Dynamic Offset Cancellation Techniques for Operational Amplifiers," Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 2012, pp. 21-49.
[16] 董人宏,全差動截波穩定型運算放大器設計與實現,碩士論文,國立暨南國際大學電機工程學系,南投,2004。[17] A. D. Sundararajan and S. M. R. Hasan, “Quadruply split cross-driven doubly recycled gm-doubling recycled folded cascode for microsensor instrumentation amplifiers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 6, 2016, pp. 543-547.
[18] M. Konar, R. Sahu and S. Kundu, “Improvement of the gain accuracy of the instrumentation amplifier using a very high gain operational amplifier,” IEEE Devices for Integrated Circuit, 2019, pp. 408-412.
[19] Y. Kwon, H. Kim, D. You, H. Heo, H. Ko and S. Lee, “A 28.4 n V/ Hz chopper stabilized current feedback instrumentation amplifier with auto offset calibration DAC for resistive bridge sensor,” 2020 International SoC Design Conference (ISOCC), 2020, pp. 228-229.
[20] Walid Zemouri, Eman A. Soliman and Soliman A. Mahmoud, “High frequency tow-thomas tunable filter using OTA based voltage op-amp,” International Symposium on Integrated Circuits, Singapore, 2011, pp. 484-487.
[21] A. D. Grasso, G. Palumbo and S. Pennisi, “Comparison of the frequency compensation techniques for CMOS two-stage miller OTAs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 11, 2008, pp. 1099-1103.
[22] Razavi, Design of Analog CMOS Integrated Circuits, McGraw-hill education, 2nd Edition, 2015, pp.234.