跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏廷聿
研究生(外文):WEI, TING-YU
論文名稱:導流葉片配置設計對建築屋頂風能潛力之提升效應評估
論文名稱(外文):Impacts of Guide Vane Design on Enhancing Wind Energy Potential for Building Rooftop Canopy
指導教授:阮于軒
指導教授(外文):JUAN, YU-HSUAN
口試委員:朱佳仁林正釧阮于軒蘇瑛敏
口試委員(外文):CHU, CHIA-RENLIN, CHENG-CHUANJUAN, YU-HSUANSU, YING-MING
口試日期:2024-06-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:178
中文關鍵詞:導流葉片形狀優化風能潛勢城市風能計算流體力學
外文關鍵詞:Guide VaneDeflectorWind Energy PotentialUrban Wind EnergyComputational Fluid Dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xv
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 城市建築設計與規劃之風能潛力評估 7
1.2.2 建築裝設小型風力發電機發展 24
1.2.3 小型風力發電機加裝各式導流葉片之設計 36
1.2.4 建築屋頂裝設太陽能-風能混合系統 45
1.3 研究目的 48
1.4 研究方法 48
2 第二章 數值模擬理論設置 50
2.1 建築模擬案例 50
2.2 數值網格建立 53
2.3 網格獨立性驗證 54
2.4 數值計算域 56
2.5 基本假設與統御方程式 56
2.5.1 Reynolds Stress modle紊流模型 57
2.6 大氣邊界層理論 58
2.6.1 大氣邊界層之風速剖面 65
2.7 邊界條件 66
2.8 數值方法 67
2.9 紊流模型敏感性分析驗證 69
3 第三章 結果與討論 72
3.1 棚架式頂蓋後之風能效應 72
3.2 導流葉片之擺放方式 75
3.2.1 導流葉片擺放方式之風速大小分析 76
3.2.2 導流葉片擺放方式之紊流強度分析 79
3.2.3 導流葉片擺放方式之風能密度分析 82
3.3 導流葉片之數量 85
3.3.1 導流葉片數量之風速大小分析 87
3.3.2 導流葉片數量之紊流強度分析 91
3.3.3 導流葉片數量之風能密度分析 95
3.4 導流葉片之角度 102
3.4.1 導流葉片角度之速度大小分析 103
3.4.2 導流葉片角度之紊流強度分析 107
3.4.3 導流葉片角度之風能密度分析 111
3.5 建築角隅構型設計 117
3.5.1 建築角隅構型在不同擺放方式下的風速大小分析 118
3.5.2 建築角隅構型在不同擺放方式下的紊流強度分析 122
3.5.3 建築角隅構型在不同擺放方式下的風能密度分析 125
3.5.4 建築角隅構型在不同角度配置下的風速大小分析 131
3.5.5 建築角隅構型在不同角度配置下的紊流強度分析 137
3.5.6 建築角隅構型在不同角度配置下的風能密度分析 145
3.6 迎風方向效應 154
3.6.1 迎風方向效應之風速大小分析 154
3.6.2 迎風方向效應之紊流強度分析 156
3.6.3 迎風方向效應之風能密度分析 158
3.7 多棟建築配置之風電潛能評估 161
3.7.1 多棟建築配置之風能密度分析 162
3.8 侷限性和未來討論 164
4 第四章 結論 166
5 參考文獻 168
6 符號彙編 177



朱內政部營建署. (2013). 建築物耐風設計規範及解說. 營建雜誌社.
朱佳仁. (2003). 環境流體力學 第二版. 台北;科技圖書出版公司.
Abdullah, M. S., Ishak, M. H. H., & Ismail, F. (2023). Performance improvement of the Savonius turbine using a novel augmentation device with the Taguchi optimization method. Physics of Fluids, 35(1), 015108. https://doi.org/10.1063/5.0131537
Abohela, I., Hamza, N., & Dudek, S. (2013). Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renewable Energy, 50, 1106–1118. https://doi.org/10.1016/j.renene.2012.08.068
Abrahamson. (2023). Fluent Theory Guide.
Acarer, S., Uyulan, Ç., & Karadeniz, Z. H. (2020). Optimization of radial inflow wind turbines for urban wind energy harvesting. Energy, 202, 117772. https://doi.org/10.1016/j.energy.2020.117772
Alanis Ruiz, C., Kalkman, I., & Blocken, B. (2021). Aerodynamic design optimization of ducted openings through high-rise buildings for wind energy harvesting. Building and Environment, 202, 108028. https://doi.org/10.1016/j.buildenv.2021.108028
Alsailani, M., Montazeri, H., & Rezaeiha, A. (2021). Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics. Renewable Energy, 168, 1344–1363. https://doi.org/10.1016/j.renene.2020.12.053
Anbarsooz, M., & Amiri, M. (2022). Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings. Energy, 239, 122351. https://doi.org/10.1016/j.energy.2021.122351
Arteaga-López, E., Ángeles-Camacho, C., & Bañuelos-Ruedas, F. (2019). Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis. Energy, 167, 181–188. https://doi.org/10.1016/j.energy.2018.10.191
Blocken, B., Van Hooff, T., Aanen, L., & Bronsema, B. (2011). Computational analysis of the performance of a venturi-shaped roof for natural ventilation: Venturi-effect versus wind-blocking effect. Computers & Fluids, 48(1), 202–213. https://doi.org/10.1016/j.compfluid.2011.04.012
Calautit, K., & Johnstone, C. (2023). State-of-the-art review of micro to small-scale wind energy harvesting technologies for building integration. Energy Conversion and Management: X, 20, 100457. https://doi.org/10.1016/j.ecmx.2023.100457
Chang, T.-B., Lin, Y.-S., & Hsu, Y.-T. (2023). CFD simulations of effects of recirculation mode and fresh air mode on vehicle cabin indoor air quality. Atmospheric Environment, 293, 119473. https://doi.org/10.1016/j.atmosenv.2022.119473
Chaudhry, H. N., Calautit, J. K., & Hughes, B. R. (2015). Computational Analysis to Factor Wind into the Design of an Architectural Environment. Modelling and Simulation in Engineering, 2015, 1–10. https://doi.org/10.1155/2015/234601
Chen, G., Rong, L., & Zhang, G. (2021). Unsteady-state CFD simulations on the impacts of urban geometry on outdoor thermal comfort within idealized building arrays. Sustainable Cities and Society, 74, 103187. https://doi.org/10.1016/j.scs.2021.103187
Chen, L., Hang, J., Sandberg, M., Claesson, L., & Di Sabatino, S. (2017). The Influence of Building Packing Densities on Flow Adjustment and City Breathability in Urban-like Geometries. Procedia Engineering, 198, 758–769. https://doi.org/10.1016/j.proeng.2017.07.127
Chong, W. T., Naghavi, M. S., Poh, S. C., Mahlia, T. M. I., & Pan, K. C. (2011). Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Applied Energy, 88(11), 4067–4077. https://doi.org/10.1016/j.apenergy.2011.04.042
Chong, W. T., Wang, X. H., Wong, K. H., Mojumder, J. C., Poh, S. C., Saw, L. H., & Lai, S. H. (2016). Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings. Energy and Buildings, 127, 1028–1042. https://doi.org/10.1016/j.enbuild.2016.06.065
Dai, S. F., Liu, H. J., Chu, Y. J., Lam, H. F., & Peng, H. Y. (2022). Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings. Energy, 241, 122920. https://doi.org/10.1016/j.energy.2021.122920
Dao, M. H., Zhang, B., Xing, X., Lou, J., Tan, W. S., Cui, Y., & Khoo, B. C. (2023). Wind tunnel and CFD studies of wind loadings on topsides of offshore structures. Ocean Engineering, 285, 115310. https://doi.org/10.1016/j.oceaneng.2023.115310
Davenport, A. G. (1963). The relationship of wind structure to wind loading. 2, 26–28.
Dayan, E. (2006). Wind energy in buildings. Refocus, 7(2), 33–38. https://doi.org/10.1016/S1471-0846(06)70545-5
Dilimulati, A., Stathopoulos, T., & Paraschivoiu, M. (2018). Wind turbine designs for urban applications: A case study of shrouded diffuser casing for turbines. Journal of Wind Engineering and Industrial Aerodynamics, 175, 179–192. https://doi.org/10.1016/j.jweia.2018.01.003
Elbakheit, A. R. (2018). Effect of turbine resistance and positioning on performance of Aerofoil wing building augmented wind energy generation. Energy and Buildings, 174, 365–371. https://doi.org/10.1016/j.enbuild.2018.06.025
Elsayed, K., & Lacor, C. (2011). The effect of cyclone inlet dimensions on the flow pattern and performance. Applied Mathematical Modelling, 35(4), 1952–1968. https://doi.org/10.1016/j.apm.2010.11.007
Fatahian, E., Ismail, F., Ishak, M. H. H., & Chang, W. S. (2023). Aerodynamic performance improvement of Savonius wind turbine through a passive flow control method using grooved surfaces on a deflector. Ocean Engineering, 284, 115282. https://doi.org/10.1016/j.oceaneng.2023.115282
G, H. (1917). Über die Bewegung der Luft in den untersten Schichten der Atmosphäre. https://books.google.com.tw/books/about/%C3%9Cber_die_Bewegung_der_Luft_in_den_unter.html?id=Dz-KnQEACAAJ&redir_esc=y
Ge, J., Shen, C., Zhao, K., & Lv, G. (2022). Energy production features of rooftop hybrid photovoltaic–wind system and matching analysis with building energy use. Energy Conversion and Management, 258, 115485. https://doi.org/10.1016/j.enconman.2022.115485
Harvesting Wind Energy from Tall Buildings_CTBUH.pdf. (不詳).
Hassanli, S., Chauhan, K., Zhao, M., & Kwok, K. C. S. (2019). Application of through-building openings for wind energy harvesting in built environment. Journal of Wind Engineering and Industrial Aerodynamics, 184, 445–455. https://doi.org/10.1016/j.jweia.2018.11.030
He, Y., Ren, C., Mak, H. W. L., Lin, C., Wang, Z., Fung, J. C. H., Li, Y., Lau, A. K. H., & Ng, E. (2021). Investigations of high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in Hong Kong. Urban Climate, 38, 100884. https://doi.org/10.1016/j.uclim.2021.100884
He, Y., Tablada, A., & Wong, N. H. (2019). A parametric study of angular road patterns on pedestrian ventilation in high-density urban areas. Building and Environment, 151, 251–267. https://doi.org/10.1016/j.buildenv.2019.01.047
Hoekstra, A. (2000). Gas Flow Field and Collection Efficiency of Cyclone Separators.
Hou, Y., Di, J., Li, R., Li, G., Wang, Q., & Wang, J. (2022). Influence of height ratio in groups of buildings of unequal height on micrositing of urban-SWTs. Journal of Wind Engineering and Industrial Aerodynamics, 231, 105218. https://doi.org/10.1016/j.jweia.2022.105218
IEC61400-2. (2013). Wind Turbines Part II. Design Requirements for Small Wind Turbines.
Jang, Y. K., & Kim, J. W. (1987). Total SO2 emission control strategies for the management of air pollution in ulsan industrial complex. Atmospheric Environment (1967), 21(3), 469–477. https://doi.org/10.1016/0004-6981(87)90029-1
Javaid, A., Sajid, M., Uddin, E., Waqas, A., & Ayaz, Y. (2024). Sustainable urban energy solutions: Forecasting energy production for hybrid solar-wind systems. Energy Conversion and Management, 302, 118120. https://doi.org/10.1016/j.enconman.2024.118120
Jiang, Z., Kobayashi, T., Yamanaka, T., Sandberg, M., Choi, N., Kobayashi, N., Sano, K., & Toyosawa, K. (2023). Wind tunnel experiment of wind-induced single-sided ventilation under generic sheltered urban area. Building and Environment, 242, 110615. https://doi.org/10.1016/j.buildenv.2023.110615
Juan, Y.-H., Rezaeiha, A., Montazeri, H., Blocken, B., Wen, C.-Y., & Yang, A.-S. (2022a). CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height. Applied Energy, 321, 119328. https://doi.org/10.1016/j.apenergy.2022.119328
Juan, Y.-H., Rezaeiha, A., Montazeri, H., Blocken, B., Wen, C.-Y., & Yang, A.-S. (2022b). CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height. Applied Energy, 321, 119328. https://doi.org/10.1016/j.apenergy.2022.119328
Juan, Y.-H., Rezaeiha, A., Montazeri, H., Blocken, B., Wen, C.-Y., & Yang, A.-S. (2022c). CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height. Applied Energy, 321, 119328. https://doi.org/10.1016/j.apenergy.2022.119328
Juan, Y.-H., Wen, C.-Y., Chen, W.-Y., & Yang, A.-S. (2021). Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas. Renewable and Sustainable Energy Reviews, 135, 110165. https://doi.org/10.1016/j.rser.2020.110165
Kaseb, Z., & Montazeri, H. (2022). Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels. Energy, 258, 124814. https://doi.org/10.1016/j.energy.2022.124814
Kim, D., & Gharib, M. (2013). Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics, 115, 48–52. https://doi.org/10.1016/j.jweia.2013.01.009
Kono, T., Kogaki, T., & Kiwata, T. (2016). Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building. Energies, 9(11), 907. https://doi.org/10.3390/en9110907
Krishnan, A., & Paraschivoiu, M. (2016). 3D analysis of building mounted VAWT with diffuser shaped shroud. Sustainable Cities and Society, 27, 160–166. https://doi.org/10.1016/j.scs.2015.06.006
Kuang, L., Su, J., Chen, Y., Han, Z., Zhou, D., Zhang, K., Zhao, Y., & Bao, Y. (2022). Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system. Energy, 239, 122196. https://doi.org/10.1016/j.energy.2021.122196
Kumar, N., Kubota, T., Tominaga, Y., Shirzadi, M., & Bardhan, R. (2021). CFD simulations of wind-induced ventilation in apartment buildings with vertical voids: Effects of pilotis and wind fin on ventilation performance. Building and Environment, 194, 107666. https://doi.org/10.1016/j.buildenv.2021.107666
Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566. https://doi.org/10.1017/S0022112075001814
Ledo, L., Kosasih, P. B., & Cooper, P. (2011). Roof mounting site analysis for micro-wind turbines. Renewable Energy, 36(5), 1379–1391. https://doi.org/10.1016/j.renene.2010.10.030
Lee, Y.-T., Lo, Y.-L., Juan, Y.-H., Li, Z., Wen, C.-Y., & Yang, A.-S. (2023). Effect of void space arrangement on wind power potential and pressure coefficient distributions for high-rise void buildings. Journal of Building Engineering, 75, 107061. https://doi.org/10.1016/j.jobe.2023.107061
Li, Q. S., Shu, Z. R., & Chen, F. B. (2016). Performance assessment of tall building-integrated wind turbines for power generation. Applied Energy, 165, 777–788. https://doi.org/10.1016/j.apenergy.2015.12.114
Li, Y., Zhao, S., Qu, C., Tong, G., Feng, F., Zhao, B., & Kotaro, T. (2020). Aerodynamic characteristics of Straight-bladed Vertical Axis Wind Turbine with a curved-outline wind gathering device. Energy Conversion and Management, 203, 112249. https://doi.org/10.1016/j.enconman.2019.112249
Li, Y., Zhao, S., Tagawa, K., & Feng, F. (2018). Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conversion and Management, 167, 70–80. https://doi.org/10.1016/j.enconman.2018.04.062
Lu, Y., Li, S., Xu, W., & Wang, Y. (2023). Numerical simulation study of indoor disinfection spray distribution based on CFD-DPM method. Journal of Engineering Research, S2307187723003000. https://doi.org/10.1016/j.jer.2023.10.039
Malipeddi, A. R., & Chatterjee, D. (2012). Influence of duct geometry on the performance of Darrieus hydroturbine. Renewable Energy, 43, 292–300. https://doi.org/10.1016/j.renene.2011.12.008
Malliotakis, G. E., Nikolaidis, T. N., & Baniotopoulos, C. C. (2020). Small wind turbines: Sustainability criteria related to the local built environment. IOP Conference Series: Earth and Environmental Science, 410(1), 012046. https://doi.org/10.1088/1755-1315/410/1/012046
Meng, Y., & Hibi, K. (1998). Turbulent measurments of the flow field around a high-rise building. Wind Engineers, JAWE, 1998(76), 55–64. https://doi.org/10.5359/jawe.1998.76_55
Mertens, S. (2006). Wind Energy in the Built Environment.
Müller, G., Jentsch, M. F., & Stoddart, E. (2009). Vertical axis resistance type wind turbines for use in buildings. Renewable Energy, 34(5), 1407–1412. https://doi.org/10.1016/j.renene.2008.10.008
Nasarullah Chaudhry, H., Kaiser Calautit, J., Richard Hughes, B., & 1 School of the Built Environment, Heriot-Watt University, PO Box 294 345, Dubai, UAE.; (2014). The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT). AIMS Energy, 2(3), 219–236. https://doi.org/10.3934/energy.2014.3.219
Patankar, B., Tyagi, R., Kiss, D., & Suma, A. B. (2016). Evaluation of an Integrated Roof Wind Energy System for urban environments. Journal of Physics: Conference Series, 753, 102007. https://doi.org/10.1088/1742-6596/753/10/102007
Patankar, S. V. (2018). Numerical Heat Transfer and Fluid Flow (1 本). CRC Press. https://doi.org/10.1201/9781482234213
Pedruzzi, R., Silva, A. R., Soares Dos Santos, T., Araujo, A. C., Cotta Weyll, A. L., Lago Kitagawa, Y. K., Nunes Da Silva Ramos, D., Milani De Souza, F., Almeida Narciso, M. V., Saraiva Araujo, M. L., Medrado, R. C., Camilo Júnior, W. O., Neto, A. T., De Carvalho, M., Pires Bezerra, W. R., Costa, T. T., Bione De Melo Filho, J., Bandeira Santos, A. Á., & Moreira, D. M. (2023). Review of mapping analysis and complementarity between solar and wind energy sources. Energy, 283, 129045. https://doi.org/10.1016/j.energy.2023.129045
Plate, E. J., & Kiefer, H. (2001). Wind loads in urban areas. Journal of Wind Engineering and Industrial Aerodynamics, 89(14–15), 1233–1256. https://doi.org/10.1016/S0167-6105(01)00159-3
Pourteimouri, P., Campmans, G., Wijnberg, K., & Hulscher, S. (2020). THE IMPACT OF BUILDINGS’ CHARACTERISTICS ON AIRFLOW PATTERNS AND BED MORPHOLOGY AT BEACHES, USING CFD MODELLING. Coastal Engineering Proceedings, 36v, 4. https://doi.org/10.9753/icce.v36v.sediment.4
Purohit, N., Gupta, P., & Goswami, D. G. (不詳). Harvesting Wind Energy from Tall Buildings. International Journal of Engineering Research.
Ricci, A., & Blocken, B. (2020). On the reliability of the 3D steady RANS approach in predicting microscale wind conditions in seaport areas: The case of the IJmuiden sea lock. Journal of Wind Engineering and Industrial Aerodynamics, 207, 104437. https://doi.org/10.1016/j.jweia.2020.104437
Ricci, A., Burlando, M., Repetto, M. P., & Blocken, B. (2022). Static downscaling of mesoscale wind conditions into an urban canopy layer by a CFD microscale model. Building and Environment, 225, 109626. https://doi.org/10.1016/j.buildenv.2022.109626
Safikhani, H., Akhavan-Behabadi, M. A., Shams, M., & Rahimyan, M. H. (2010). Numerical simulation of flow field in three types of standard cyclone separators. Advanced Powder Technology, 21(4), 435–442. https://doi.org/10.1016/j.apt.2010.01.002
Salameh, Z., & Nandu, C. V. (2010). Overview of building integrated wind energy conversion systems. IEEE PES General Meeting, 1–6. https://doi.org/10.1109/PES.2010.5590054
Sharpe, T., & Proven, G. (2010). Crossflex: Concept and early development of a true building integrated wind turbine. Energy and Buildings, 42(12), 2365–2375. https://doi.org/10.1016/j.enbuild.2010.07.032
Shirzadi, M., & Tominaga, Y. (2022). CFD evaluation of mean and turbulent wind characteristics around a high-rise building affected by its surroundings. Building and Environment, 225, 109637. https://doi.org/10.1016/j.buildenv.2022.109637
Simiu, E., & Yeo, D. (2019). Wind effects on structures: Modern structural design for wind (Fourth edition). John Wiley & Sons.
Simões, T., & Estanqueiro, A. (2016). A new methodology for urban wind resource assessment. Renewable Energy, 89, 598–605. https://doi.org/10.1016/j.renene.2015.12.008
Stankovic, M. S., Graham, M., Parkin, D. P., van Duijvendijk, I. M., de Gruiter, I. T., & Behling, S. (2001). WIND ENERGY FOR THE BUILT ENVIRONMENT.
Tabrizi, A. B., Whale, J., Lyons, T., & Urmee, T. (2014a). Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions. Renewable Energy, 67, 242–251. https://doi.org/10.1016/j.renene.2013.11.033
Tabrizi, A. B., Whale, J., Lyons, T., & Urmee, T. (2014b). Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions. Renewable Energy, 67, 242–251. https://doi.org/10.1016/j.renene.2013.11.033
Tao, S., Yu, N., Ai, Z., Zhao, K., & Jiang, F. (2023). Investigation of convective heat transfer at the facade with balconies for a multi-story building. Journal of Building Engineering, 63, 105420. https://doi.org/10.1016/j.jobe.2022.105420
Taylor, D. (1998). Using buildings to harvest wind energy. Building Research & Information, 26(3), 199–202. https://doi.org/10.1080/096132198369977
Tian, W., Bian, J., Yang, G., Ni, X., & Mao, Z. (2022). Influence of a passive upstream deflector on the performance of the Savonius wind turbine. Energy Reports, 8, 7488–7499. https://doi.org/10.1016/j.egyr.2022.05.244
Toja-Silva, F., Lopez-Garcia, O., Peralta, C., Navarro, J., & Cruz, I. (2016). An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Applied Energy, 164, 769–794. https://doi.org/10.1016/j.apenergy.2015.11.095
Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J., & Cruz, I. (2015a). Effect of roof-mounted solar panels on the wind energy exploitation on high-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 145, 123–138. https://doi.org/10.1016/j.jweia.2015.06.010
Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J., & Cruz, I. (2015b). On Roof Geometry for Urban Wind Energy Exploitation in High-Rise Buildings. Computation, 3(2), 299–325. https://doi.org/10.3390/computation3020299
Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J., & Cruz, I. (2015c). Roof region dependent wind potential assessment with different RANS turbulence models. Journal of Wind Engineering and Industrial Aerodynamics, 142, 258–271. https://doi.org/10.1016/j.jweia.2015.04.012
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1749–1761. https://doi.org/10.1016/j.jweia.2008.02.058
Tsichritzis, L., & Nikolopoulou, M. (2019). The effect of building height and façade area ratio on pedestrian wind comfort of London. Journal of Wind Engineering and Industrial Aerodynamics, 191, 63–75. https://doi.org/10.1016/j.jweia.2019.05.021
Van Doormaal, J. P., & Raithby, G. D. (1984). ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS. Numerical Heat Transfer, 7(2), 147–163. https://doi.org/10.1080/01495728408961817
Wang, B., Cot, L. D., Adolphe, L., & Geoffroy, S. (2017). Estimation of wind energy of a building with canopy roof. Sustainable Cities and Society, 35, 402–416. https://doi.org/10.1016/j.scs.2017.08.026
Wang, Q., Wang, J., Hou, Y., Yuan, R., Luo, K., & Fan, J. (2018). Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements. Renewable Energy, 115, 1118–1133. https://doi.org/10.1016/j.renene.2017.09.045
Wieringa, J. (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41(1–3), 357–368. https://doi.org/10.1016/0167-6105(92)90434-C
Wong, K. H., Chong, W. T., Poh, S. C., Shiah, Y.-C., Sukiman, N. L., & Wang, C.-T. (2018). 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy, 129, 32–55. https://doi.org/10.1016/j.renene.2018.05.085
Wong, K. H., Chong, W. T., Sukiman, N. L., Shiah, Y.-C., Poh, S. C., Sopian, K., & Wang, W.-C. (2018). Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Conversion and Management, 160, 109–125. https://doi.org/10.1016/j.enconman.2018.01.029
Wu, P., & Feng, R. (2023). CFD wind tunnel investigation for wind loads of steel television tower with grid structure. Structures, 58, 105399. https://doi.org/10.1016/j.istruc.2023.105399
Xu, W., Li, G., Zheng, X., Li, Y., Li, S., Zhang, C., & Wang, F. (2021). High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building. Renewable Energy, 177, 461–474. https://doi.org/10.1016/j.renene.2021.04.071
Xu, W., Li, Y., Li, G., Li, S., Zhang, C., & Wang, F. (2021). High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings. Renewable Energy, 176, 25–39. https://doi.org/10.1016/j.renene.2021.05.011
Yang, A.-S., Su, Y.-M., Wen, C.-Y., Juan, Y.-H., Wang, W.-S., & Cheng, C.-H. (2016). Estimation of wind power generation in dense urban area. Applied Energy, 171, 213–230. https://doi.org/10.1016/j.apenergy.2016.03.007
Ye, X., Zhang, X., Weerasuriya, A. U., Hang, J., Zeng, L., & Li, C. Y. (2024a). Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines. Applied Energy, 355, 122311. https://doi.org/10.1016/j.apenergy.2023.122311
Ye, X., Zhang, X., Weerasuriya, A. U., Hang, J., Zeng, L., & Li, C. Y. (2024b). Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines. Applied Energy, 355, 122311. https://doi.org/10.1016/j.apenergy.2023.122311
Yuwono, T., Sakti, G., Nur Aulia, F., & Chandra Wijaya, A. (2020). Improving the performance of Savonius wind turbine by installation of a circular cylinder upstream of returning turbine blade. Alexandria Engineering Journal, 59(6), 4923–4932. https://doi.org/10.1016/j.aej.2020.09.009
Zahid Iqbal, Q. M., & Chan, A. L. S. (2016). Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. Building and Environment, 101, 45–63. https://doi.org/10.1016/j.buildenv.2016.02.015
Zanforlin, S., & Letizia, S. (2015). Improving the Performance of Wind Turbines in Urban Environment by Integrating the Action of a Diffuser with the Aerodynamics of the Rooftops. Energy Procedia, 82, 774–781. https://doi.org/10.1016/j.egypro.2015.11.810
Zhang, S., Kwok, K. C. S., Liu, H., Jiang, Y., Dong, K., & Wang, B. (2021). A CFD study of wind assessment in urban topology with complex wind flow. Sustainable Cities and Society, 71, 103006. https://doi.org/10.1016/j.scs.2021.103006
Zidane, I. F., Ali, H. M., Swadener, G., Eldrainy, Y. A., & Shehata, A. I. (2023). Effect of upstream deflector utilization on H-Darrieus wind turbine performance: An optimization study. Alexandria Engineering Journal, 63, 175–189. https://doi.org/10.1016/j.aej.2022.07.052


電子全文 電子全文(網際網路公開日期:20290729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊