|
朱內政部營建署. (2013). 建築物耐風設計規範及解說. 營建雜誌社. 朱佳仁. (2003). 環境流體力學 第二版. 台北;科技圖書出版公司. Abdullah, M. S., Ishak, M. H. H., & Ismail, F. (2023). Performance improvement of the Savonius turbine using a novel augmentation device with the Taguchi optimization method. Physics of Fluids, 35(1), 015108. https://doi.org/10.1063/5.0131537 Abohela, I., Hamza, N., & Dudek, S. (2013). Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renewable Energy, 50, 1106–1118. https://doi.org/10.1016/j.renene.2012.08.068 Abrahamson. (2023). Fluent Theory Guide. Acarer, S., Uyulan, Ç., & Karadeniz, Z. H. (2020). Optimization of radial inflow wind turbines for urban wind energy harvesting. Energy, 202, 117772. https://doi.org/10.1016/j.energy.2020.117772 Alanis Ruiz, C., Kalkman, I., & Blocken, B. (2021). Aerodynamic design optimization of ducted openings through high-rise buildings for wind energy harvesting. Building and Environment, 202, 108028. https://doi.org/10.1016/j.buildenv.2021.108028 Alsailani, M., Montazeri, H., & Rezaeiha, A. (2021). Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics. Renewable Energy, 168, 1344–1363. https://doi.org/10.1016/j.renene.2020.12.053 Anbarsooz, M., & Amiri, M. (2022). Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings. Energy, 239, 122351. https://doi.org/10.1016/j.energy.2021.122351 Arteaga-López, E., Ángeles-Camacho, C., & Bañuelos-Ruedas, F. (2019). Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis. Energy, 167, 181–188. https://doi.org/10.1016/j.energy.2018.10.191 Blocken, B., Van Hooff, T., Aanen, L., & Bronsema, B. (2011). Computational analysis of the performance of a venturi-shaped roof for natural ventilation: Venturi-effect versus wind-blocking effect. Computers & Fluids, 48(1), 202–213. https://doi.org/10.1016/j.compfluid.2011.04.012 Calautit, K., & Johnstone, C. (2023). State-of-the-art review of micro to small-scale wind energy harvesting technologies for building integration. Energy Conversion and Management: X, 20, 100457. https://doi.org/10.1016/j.ecmx.2023.100457 Chang, T.-B., Lin, Y.-S., & Hsu, Y.-T. (2023). CFD simulations of effects of recirculation mode and fresh air mode on vehicle cabin indoor air quality. Atmospheric Environment, 293, 119473. https://doi.org/10.1016/j.atmosenv.2022.119473 Chaudhry, H. N., Calautit, J. K., & Hughes, B. R. (2015). Computational Analysis to Factor Wind into the Design of an Architectural Environment. Modelling and Simulation in Engineering, 2015, 1–10. https://doi.org/10.1155/2015/234601 Chen, G., Rong, L., & Zhang, G. (2021). Unsteady-state CFD simulations on the impacts of urban geometry on outdoor thermal comfort within idealized building arrays. Sustainable Cities and Society, 74, 103187. https://doi.org/10.1016/j.scs.2021.103187 Chen, L., Hang, J., Sandberg, M., Claesson, L., & Di Sabatino, S. (2017). The Influence of Building Packing Densities on Flow Adjustment and City Breathability in Urban-like Geometries. Procedia Engineering, 198, 758–769. https://doi.org/10.1016/j.proeng.2017.07.127 Chong, W. T., Naghavi, M. S., Poh, S. C., Mahlia, T. M. I., & Pan, K. C. (2011). Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Applied Energy, 88(11), 4067–4077. https://doi.org/10.1016/j.apenergy.2011.04.042 Chong, W. T., Wang, X. H., Wong, K. H., Mojumder, J. C., Poh, S. C., Saw, L. H., & Lai, S. H. (2016). Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings. Energy and Buildings, 127, 1028–1042. https://doi.org/10.1016/j.enbuild.2016.06.065 Dai, S. F., Liu, H. J., Chu, Y. J., Lam, H. F., & Peng, H. Y. (2022). Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings. Energy, 241, 122920. https://doi.org/10.1016/j.energy.2021.122920 Dao, M. H., Zhang, B., Xing, X., Lou, J., Tan, W. S., Cui, Y., & Khoo, B. C. (2023). Wind tunnel and CFD studies of wind loadings on topsides of offshore structures. Ocean Engineering, 285, 115310. https://doi.org/10.1016/j.oceaneng.2023.115310 Davenport, A. G. (1963). The relationship of wind structure to wind loading. 2, 26–28. Dayan, E. (2006). Wind energy in buildings. Refocus, 7(2), 33–38. https://doi.org/10.1016/S1471-0846(06)70545-5 Dilimulati, A., Stathopoulos, T., & Paraschivoiu, M. (2018). Wind turbine designs for urban applications: A case study of shrouded diffuser casing for turbines. Journal of Wind Engineering and Industrial Aerodynamics, 175, 179–192. https://doi.org/10.1016/j.jweia.2018.01.003 Elbakheit, A. R. (2018). Effect of turbine resistance and positioning on performance of Aerofoil wing building augmented wind energy generation. Energy and Buildings, 174, 365–371. https://doi.org/10.1016/j.enbuild.2018.06.025 Elsayed, K., & Lacor, C. (2011). The effect of cyclone inlet dimensions on the flow pattern and performance. Applied Mathematical Modelling, 35(4), 1952–1968. https://doi.org/10.1016/j.apm.2010.11.007 Fatahian, E., Ismail, F., Ishak, M. H. H., & Chang, W. S. (2023). Aerodynamic performance improvement of Savonius wind turbine through a passive flow control method using grooved surfaces on a deflector. Ocean Engineering, 284, 115282. https://doi.org/10.1016/j.oceaneng.2023.115282 G, H. (1917). Über die Bewegung der Luft in den untersten Schichten der Atmosphäre. https://books.google.com.tw/books/about/%C3%9Cber_die_Bewegung_der_Luft_in_den_unter.html?id=Dz-KnQEACAAJ&redir_esc=y Ge, J., Shen, C., Zhao, K., & Lv, G. (2022). Energy production features of rooftop hybrid photovoltaic–wind system and matching analysis with building energy use. Energy Conversion and Management, 258, 115485. https://doi.org/10.1016/j.enconman.2022.115485 Harvesting Wind Energy from Tall Buildings_CTBUH.pdf. (不詳). Hassanli, S., Chauhan, K., Zhao, M., & Kwok, K. C. S. (2019). Application of through-building openings for wind energy harvesting in built environment. Journal of Wind Engineering and Industrial Aerodynamics, 184, 445–455. https://doi.org/10.1016/j.jweia.2018.11.030 He, Y., Ren, C., Mak, H. W. L., Lin, C., Wang, Z., Fung, J. C. H., Li, Y., Lau, A. K. H., & Ng, E. (2021). Investigations of high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in Hong Kong. Urban Climate, 38, 100884. https://doi.org/10.1016/j.uclim.2021.100884 He, Y., Tablada, A., & Wong, N. H. (2019). A parametric study of angular road patterns on pedestrian ventilation in high-density urban areas. Building and Environment, 151, 251–267. https://doi.org/10.1016/j.buildenv.2019.01.047 Hoekstra, A. (2000). Gas Flow Field and Collection Efficiency of Cyclone Separators. Hou, Y., Di, J., Li, R., Li, G., Wang, Q., & Wang, J. (2022). Influence of height ratio in groups of buildings of unequal height on micrositing of urban-SWTs. Journal of Wind Engineering and Industrial Aerodynamics, 231, 105218. https://doi.org/10.1016/j.jweia.2022.105218 IEC61400-2. (2013). Wind Turbines Part II. Design Requirements for Small Wind Turbines. Jang, Y. K., & Kim, J. W. (1987). Total SO2 emission control strategies for the management of air pollution in ulsan industrial complex. Atmospheric Environment (1967), 21(3), 469–477. https://doi.org/10.1016/0004-6981(87)90029-1 Javaid, A., Sajid, M., Uddin, E., Waqas, A., & Ayaz, Y. (2024). Sustainable urban energy solutions: Forecasting energy production for hybrid solar-wind systems. Energy Conversion and Management, 302, 118120. https://doi.org/10.1016/j.enconman.2024.118120 Jiang, Z., Kobayashi, T., Yamanaka, T., Sandberg, M., Choi, N., Kobayashi, N., Sano, K., & Toyosawa, K. (2023). Wind tunnel experiment of wind-induced single-sided ventilation under generic sheltered urban area. Building and Environment, 242, 110615. https://doi.org/10.1016/j.buildenv.2023.110615 Juan, Y.-H., Rezaeiha, A., Montazeri, H., Blocken, B., Wen, C.-Y., & Yang, A.-S. (2022a). CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height. Applied Energy, 321, 119328. https://doi.org/10.1016/j.apenergy.2022.119328 Juan, Y.-H., Rezaeiha, A., Montazeri, H., Blocken, B., Wen, C.-Y., & Yang, A.-S. (2022b). CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height. Applied Energy, 321, 119328. https://doi.org/10.1016/j.apenergy.2022.119328 Juan, Y.-H., Rezaeiha, A., Montazeri, H., Blocken, B., Wen, C.-Y., & Yang, A.-S. (2022c). CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height. Applied Energy, 321, 119328. https://doi.org/10.1016/j.apenergy.2022.119328 Juan, Y.-H., Wen, C.-Y., Chen, W.-Y., & Yang, A.-S. (2021). Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas. Renewable and Sustainable Energy Reviews, 135, 110165. https://doi.org/10.1016/j.rser.2020.110165 Kaseb, Z., & Montazeri, H. (2022). Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels. Energy, 258, 124814. https://doi.org/10.1016/j.energy.2022.124814 Kim, D., & Gharib, M. (2013). Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics, 115, 48–52. https://doi.org/10.1016/j.jweia.2013.01.009 Kono, T., Kogaki, T., & Kiwata, T. (2016). Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building. Energies, 9(11), 907. https://doi.org/10.3390/en9110907 Krishnan, A., & Paraschivoiu, M. (2016). 3D analysis of building mounted VAWT with diffuser shaped shroud. Sustainable Cities and Society, 27, 160–166. https://doi.org/10.1016/j.scs.2015.06.006 Kuang, L., Su, J., Chen, Y., Han, Z., Zhou, D., Zhang, K., Zhao, Y., & Bao, Y. (2022). Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system. Energy, 239, 122196. https://doi.org/10.1016/j.energy.2021.122196 Kumar, N., Kubota, T., Tominaga, Y., Shirzadi, M., & Bardhan, R. (2021). CFD simulations of wind-induced ventilation in apartment buildings with vertical voids: Effects of pilotis and wind fin on ventilation performance. Building and Environment, 194, 107666. https://doi.org/10.1016/j.buildenv.2021.107666 Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537–566. https://doi.org/10.1017/S0022112075001814 Ledo, L., Kosasih, P. B., & Cooper, P. (2011). Roof mounting site analysis for micro-wind turbines. Renewable Energy, 36(5), 1379–1391. https://doi.org/10.1016/j.renene.2010.10.030 Lee, Y.-T., Lo, Y.-L., Juan, Y.-H., Li, Z., Wen, C.-Y., & Yang, A.-S. (2023). Effect of void space arrangement on wind power potential and pressure coefficient distributions for high-rise void buildings. Journal of Building Engineering, 75, 107061. https://doi.org/10.1016/j.jobe.2023.107061 Li, Q. S., Shu, Z. R., & Chen, F. B. (2016). Performance assessment of tall building-integrated wind turbines for power generation. Applied Energy, 165, 777–788. https://doi.org/10.1016/j.apenergy.2015.12.114 Li, Y., Zhao, S., Qu, C., Tong, G., Feng, F., Zhao, B., & Kotaro, T. (2020). Aerodynamic characteristics of Straight-bladed Vertical Axis Wind Turbine with a curved-outline wind gathering device. Energy Conversion and Management, 203, 112249. https://doi.org/10.1016/j.enconman.2019.112249 Li, Y., Zhao, S., Tagawa, K., & Feng, F. (2018). Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conversion and Management, 167, 70–80. https://doi.org/10.1016/j.enconman.2018.04.062 Lu, Y., Li, S., Xu, W., & Wang, Y. (2023). Numerical simulation study of indoor disinfection spray distribution based on CFD-DPM method. Journal of Engineering Research, S2307187723003000. https://doi.org/10.1016/j.jer.2023.10.039 Malipeddi, A. R., & Chatterjee, D. (2012). Influence of duct geometry on the performance of Darrieus hydroturbine. Renewable Energy, 43, 292–300. https://doi.org/10.1016/j.renene.2011.12.008 Malliotakis, G. E., Nikolaidis, T. N., & Baniotopoulos, C. C. (2020). Small wind turbines: Sustainability criteria related to the local built environment. IOP Conference Series: Earth and Environmental Science, 410(1), 012046. https://doi.org/10.1088/1755-1315/410/1/012046 Meng, Y., & Hibi, K. (1998). Turbulent measurments of the flow field around a high-rise building. Wind Engineers, JAWE, 1998(76), 55–64. https://doi.org/10.5359/jawe.1998.76_55 Mertens, S. (2006). Wind Energy in the Built Environment. Müller, G., Jentsch, M. F., & Stoddart, E. (2009). Vertical axis resistance type wind turbines for use in buildings. Renewable Energy, 34(5), 1407–1412. https://doi.org/10.1016/j.renene.2008.10.008 Nasarullah Chaudhry, H., Kaiser Calautit, J., Richard Hughes, B., & 1 School of the Built Environment, Heriot-Watt University, PO Box 294 345, Dubai, UAE.; (2014). The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT). AIMS Energy, 2(3), 219–236. https://doi.org/10.3934/energy.2014.3.219 Patankar, B., Tyagi, R., Kiss, D., & Suma, A. B. (2016). Evaluation of an Integrated Roof Wind Energy System for urban environments. Journal of Physics: Conference Series, 753, 102007. https://doi.org/10.1088/1742-6596/753/10/102007 Patankar, S. V. (2018). Numerical Heat Transfer and Fluid Flow (1 本). CRC Press. https://doi.org/10.1201/9781482234213 Pedruzzi, R., Silva, A. R., Soares Dos Santos, T., Araujo, A. C., Cotta Weyll, A. L., Lago Kitagawa, Y. K., Nunes Da Silva Ramos, D., Milani De Souza, F., Almeida Narciso, M. V., Saraiva Araujo, M. L., Medrado, R. C., Camilo Júnior, W. O., Neto, A. T., De Carvalho, M., Pires Bezerra, W. R., Costa, T. T., Bione De Melo Filho, J., Bandeira Santos, A. Á., & Moreira, D. M. (2023). Review of mapping analysis and complementarity between solar and wind energy sources. Energy, 283, 129045. https://doi.org/10.1016/j.energy.2023.129045 Plate, E. J., & Kiefer, H. (2001). Wind loads in urban areas. Journal of Wind Engineering and Industrial Aerodynamics, 89(14–15), 1233–1256. https://doi.org/10.1016/S0167-6105(01)00159-3 Pourteimouri, P., Campmans, G., Wijnberg, K., & Hulscher, S. (2020). THE IMPACT OF BUILDINGS’ CHARACTERISTICS ON AIRFLOW PATTERNS AND BED MORPHOLOGY AT BEACHES, USING CFD MODELLING. Coastal Engineering Proceedings, 36v, 4. https://doi.org/10.9753/icce.v36v.sediment.4 Purohit, N., Gupta, P., & Goswami, D. G. (不詳). Harvesting Wind Energy from Tall Buildings. International Journal of Engineering Research. Ricci, A., & Blocken, B. (2020). On the reliability of the 3D steady RANS approach in predicting microscale wind conditions in seaport areas: The case of the IJmuiden sea lock. Journal of Wind Engineering and Industrial Aerodynamics, 207, 104437. https://doi.org/10.1016/j.jweia.2020.104437 Ricci, A., Burlando, M., Repetto, M. P., & Blocken, B. (2022). Static downscaling of mesoscale wind conditions into an urban canopy layer by a CFD microscale model. Building and Environment, 225, 109626. https://doi.org/10.1016/j.buildenv.2022.109626 Safikhani, H., Akhavan-Behabadi, M. A., Shams, M., & Rahimyan, M. H. (2010). Numerical simulation of flow field in three types of standard cyclone separators. Advanced Powder Technology, 21(4), 435–442. https://doi.org/10.1016/j.apt.2010.01.002 Salameh, Z., & Nandu, C. V. (2010). Overview of building integrated wind energy conversion systems. IEEE PES General Meeting, 1–6. https://doi.org/10.1109/PES.2010.5590054 Sharpe, T., & Proven, G. (2010). Crossflex: Concept and early development of a true building integrated wind turbine. Energy and Buildings, 42(12), 2365–2375. https://doi.org/10.1016/j.enbuild.2010.07.032 Shirzadi, M., & Tominaga, Y. (2022). CFD evaluation of mean and turbulent wind characteristics around a high-rise building affected by its surroundings. Building and Environment, 225, 109637. https://doi.org/10.1016/j.buildenv.2022.109637 Simiu, E., & Yeo, D. (2019). Wind effects on structures: Modern structural design for wind (Fourth edition). John Wiley & Sons. Simões, T., & Estanqueiro, A. (2016). A new methodology for urban wind resource assessment. Renewable Energy, 89, 598–605. https://doi.org/10.1016/j.renene.2015.12.008 Stankovic, M. S., Graham, M., Parkin, D. P., van Duijvendijk, I. M., de Gruiter, I. T., & Behling, S. (2001). WIND ENERGY FOR THE BUILT ENVIRONMENT. Tabrizi, A. B., Whale, J., Lyons, T., & Urmee, T. (2014a). Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions. Renewable Energy, 67, 242–251. https://doi.org/10.1016/j.renene.2013.11.033 Tabrizi, A. B., Whale, J., Lyons, T., & Urmee, T. (2014b). Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions. Renewable Energy, 67, 242–251. https://doi.org/10.1016/j.renene.2013.11.033 Tao, S., Yu, N., Ai, Z., Zhao, K., & Jiang, F. (2023). Investigation of convective heat transfer at the facade with balconies for a multi-story building. Journal of Building Engineering, 63, 105420. https://doi.org/10.1016/j.jobe.2022.105420 Taylor, D. (1998). Using buildings to harvest wind energy. Building Research & Information, 26(3), 199–202. https://doi.org/10.1080/096132198369977 Tian, W., Bian, J., Yang, G., Ni, X., & Mao, Z. (2022). Influence of a passive upstream deflector on the performance of the Savonius wind turbine. Energy Reports, 8, 7488–7499. https://doi.org/10.1016/j.egyr.2022.05.244 Toja-Silva, F., Lopez-Garcia, O., Peralta, C., Navarro, J., & Cruz, I. (2016). An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Applied Energy, 164, 769–794. https://doi.org/10.1016/j.apenergy.2015.11.095 Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J., & Cruz, I. (2015a). Effect of roof-mounted solar panels on the wind energy exploitation on high-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 145, 123–138. https://doi.org/10.1016/j.jweia.2015.06.010 Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J., & Cruz, I. (2015b). On Roof Geometry for Urban Wind Energy Exploitation in High-Rise Buildings. Computation, 3(2), 299–325. https://doi.org/10.3390/computation3020299 Toja-Silva, F., Peralta, C., Lopez-Garcia, O., Navarro, J., & Cruz, I. (2015c). Roof region dependent wind potential assessment with different RANS turbulence models. Journal of Wind Engineering and Industrial Aerodynamics, 142, 258–271. https://doi.org/10.1016/j.jweia.2015.04.012 Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1749–1761. https://doi.org/10.1016/j.jweia.2008.02.058 Tsichritzis, L., & Nikolopoulou, M. (2019). The effect of building height and façade area ratio on pedestrian wind comfort of London. Journal of Wind Engineering and Industrial Aerodynamics, 191, 63–75. https://doi.org/10.1016/j.jweia.2019.05.021 Van Doormaal, J. P., & Raithby, G. D. (1984). ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS. Numerical Heat Transfer, 7(2), 147–163. https://doi.org/10.1080/01495728408961817 Wang, B., Cot, L. D., Adolphe, L., & Geoffroy, S. (2017). Estimation of wind energy of a building with canopy roof. Sustainable Cities and Society, 35, 402–416. https://doi.org/10.1016/j.scs.2017.08.026 Wang, Q., Wang, J., Hou, Y., Yuan, R., Luo, K., & Fan, J. (2018). Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements. Renewable Energy, 115, 1118–1133. https://doi.org/10.1016/j.renene.2017.09.045 Wieringa, J. (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41(1–3), 357–368. https://doi.org/10.1016/0167-6105(92)90434-C Wong, K. H., Chong, W. T., Poh, S. C., Shiah, Y.-C., Sukiman, N. L., & Wang, C.-T. (2018). 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy, 129, 32–55. https://doi.org/10.1016/j.renene.2018.05.085 Wong, K. H., Chong, W. T., Sukiman, N. L., Shiah, Y.-C., Poh, S. C., Sopian, K., & Wang, W.-C. (2018). Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Conversion and Management, 160, 109–125. https://doi.org/10.1016/j.enconman.2018.01.029 Wu, P., & Feng, R. (2023). CFD wind tunnel investigation for wind loads of steel television tower with grid structure. Structures, 58, 105399. https://doi.org/10.1016/j.istruc.2023.105399 Xu, W., Li, G., Zheng, X., Li, Y., Li, S., Zhang, C., & Wang, F. (2021). High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building. Renewable Energy, 177, 461–474. https://doi.org/10.1016/j.renene.2021.04.071 Xu, W., Li, Y., Li, G., Li, S., Zhang, C., & Wang, F. (2021). High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings. Renewable Energy, 176, 25–39. https://doi.org/10.1016/j.renene.2021.05.011 Yang, A.-S., Su, Y.-M., Wen, C.-Y., Juan, Y.-H., Wang, W.-S., & Cheng, C.-H. (2016). Estimation of wind power generation in dense urban area. Applied Energy, 171, 213–230. https://doi.org/10.1016/j.apenergy.2016.03.007 Ye, X., Zhang, X., Weerasuriya, A. U., Hang, J., Zeng, L., & Li, C. Y. (2024a). Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines. Applied Energy, 355, 122311. https://doi.org/10.1016/j.apenergy.2023.122311 Ye, X., Zhang, X., Weerasuriya, A. U., Hang, J., Zeng, L., & Li, C. Y. (2024b). Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines. Applied Energy, 355, 122311. https://doi.org/10.1016/j.apenergy.2023.122311 Yuwono, T., Sakti, G., Nur Aulia, F., & Chandra Wijaya, A. (2020). Improving the performance of Savonius wind turbine by installation of a circular cylinder upstream of returning turbine blade. Alexandria Engineering Journal, 59(6), 4923–4932. https://doi.org/10.1016/j.aej.2020.09.009 Zahid Iqbal, Q. M., & Chan, A. L. S. (2016). Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. Building and Environment, 101, 45–63. https://doi.org/10.1016/j.buildenv.2016.02.015 Zanforlin, S., & Letizia, S. (2015). Improving the Performance of Wind Turbines in Urban Environment by Integrating the Action of a Diffuser with the Aerodynamics of the Rooftops. Energy Procedia, 82, 774–781. https://doi.org/10.1016/j.egypro.2015.11.810 Zhang, S., Kwok, K. C. S., Liu, H., Jiang, Y., Dong, K., & Wang, B. (2021). A CFD study of wind assessment in urban topology with complex wind flow. Sustainable Cities and Society, 71, 103006. https://doi.org/10.1016/j.scs.2021.103006 Zidane, I. F., Ali, H. M., Swadener, G., Eldrainy, Y. A., & Shehata, A. I. (2023). Effect of upstream deflector utilization on H-Darrieus wind turbine performance: An optimization study. Alexandria Engineering Journal, 63, 175–189. https://doi.org/10.1016/j.aej.2022.07.052
|