|
[1] Future Generation Computer Systems 29 (2013) 1645–1660. [2] TechNews. Gartner 2018 年新興技術發展週期報告:人類與機器的界線更難劃分. Technews. 2018, August 27: https://technews.tw/2018/08/27/gartner-2018-hype-cycle-for-emerging-technologies/ [3] Panetta K, 5 Trends Appear on the Gartner Hype Cycle for Emerging Technologies, 2019 Gartner, (2019): https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019/ [4] Panetta K, 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies, 2020. Gartner, (2021): https://www.gartner.com/smarterwithgartner/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020/ [5] F. Roccaforte, P. Fiorenza, G. Greco, R. L. Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectronic Engineering 187-188 (2018) 66-77. [6] B. Pecholt, S. Gupta, P. Molian, Review of laser microscale processing of silicon carbide, Journal of Laser Applications 23 (2001) 012008. [7] Z. Huang, T.-Y. Lü, H.-Q. Wang, J.-C. Zheng, Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO, AIP Advances 5 (2015) 097204. [8] M.C. Righi, C.A. Pignedoli, G. Borghi, R.D. Felice, C.M. Bertoni, A. Catellani, Surface-induced stacking transition at SiC(0001). Physical Review B 66 (2002) 045320. [9] C. Leone, S. Genna, V. Tagliaferri, An integrated approach for the modelling of silicon carbide components laser milling process, The International Journal Advanced Manufacturing Technology 116 (2021) 2335-2357. [10] B. Meng, J. Zheng, D. Yuan, S. Xu, Machinability improvement of silicon carbide via femtosecond laser surface modification method, Applied Physics A 125 (2019) 69. [11] P.-C. Chen, W.-C. Miao, T. Ahmed, Y.-Y. Pan, C.-L. Lin, S.-C. Chen, H.-C. Kuo, B.-Y. Tsui, D.-H. Lien , Defect Inspection Techniques in SiC, Nanoscale Research Letters 17 (2022) 30. [12] H. Shi, Q. Song, Y. Hou, S. Yue, Y. Li, Z. Zhang, M. Li, K. Zhang, Z. Zhang, Investigation of structural transformation and residual stress under single femtosecond laser pulse irradiation of 4H–SiC, Ceramics International 48 (2022) 24276-24282. [13] B. Zhang, S. He, Q. Yang, H. Liu, L. Wang, F. Chen, Femtosecond laser modification of 6H–SiC crystals for waveguide devices, Applied Physics Letters 116 (2020) 111903. [14] S. Salvatori, G.S. Ponticelli, S. Pettinato, S. Genna, S. Guarino, High-Pressure Sensors Based on Laser-Manufactured Sintered Silicon Carbide, Applied Sciences 10(20) (2020) 7095. [15] B. Mills, J.A. Grant-Jacob, Lasers that learn: The interface of laser machining and machine learning, The Institution of Engineering and Technology 15(5) (2021) 207-224. [16] T. Anderson, F. Ren, S.J. Pearton, M.A. Mastro, R.T. Holm, R.L. Henry, C. R. Eddy, J.Y. Lee, K.Y. Lee, J. Kim, Laser ablation of via holes in GaN and AlGaN∕GaN high electron mobility transistor structures, Journal of Vacuum Science & Technology B 24(5) (2006) 2246-2249. [17] D. Li, G. Cheng, Z. Yang, Y. Wang, Ultrafast Laser Machine Based on All-fiber Femtosecond Laser System, Advanced Materials Research 652-654 (2013) 2374-2377. [18] D.H. Du, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide. International Journal of Heat and Mass Transfer 65 (2013) 713-718. [19] F. Inoue, A. Phommahaxay, A. Podpod, S. Suhard, H. Hoshino, B. Moeller, E. Sleeckx, K.J. Rebibis, A. Miller, E. Beyne, Advanced Dicing Technologies for Combination of Wafer to Wafer and Collective Die to Wafer Direct Bonding, 2019 IEEE 69th ECTC (2019) 437-445. [20] E. Kim, Y.S. Shimotsuma, M. Sakakura, K. Miura, 4H-SiC wafer slicing by using femtosecond laser double-pulses, Optical Materials Express 7 (2017) 2450-2460. [21] A. Hooper, J. Ehorn, M. Bread, C. Bassett, Review of Wafer Dicing Techniques for Via-Middle Process 3DI/TSV Ultrathin Silicon Device Wafers, 2015 IEEE 65th ECTC (2015) 1436-1446. [22] S. Bai, K. Sugioka, Recent Advances in the Fabrication of Highly Sensitive Surface-Enhanced Raman Scattering Substrates: Nanomolar to Attomolar Level Sensing, Light: Advanced Manufacturing 2 (2021) 13. [23] H. Liu, W. Lin, M. Hong, Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications, Light: Science & Applications 10 (2021) 162. [24] Stealth laser dicing engine lineup, DISCO Technical Review Feb (2016). [25] S. Kivistö, T. Amberla, T. Konnunaho, J. Kangastupa, J. Sillanpää, X-Lase CoreScriber, picosecond fiber laser tool for high-precision scribing and cutting of transparent materials, Physics Procedia 41 (2013) 589-591. [26] M. Antti, H. Ville, V. Jorma, Precise online auto-focus system in high speed laser micromachining applications, Physics Procedia 39 (2012) 807-813. [27] X. Xie, F. Huang, X. Wei, W. Hu, Q. Ren, X. Yuan, Modeling and optimization of pulsed green laser dicing of sapphire using response surface methodology, Optics & Laser Technology 45 (2013) 125-131. [28] C. Fornaroli, J. Holtkamp, A. Gillner, Dicing of thin Si wafers with a picosecond laser ablation process, Physics Procedia 41 (2013) 603-609. [29] K.W. Shi, Y.B. Kar, N.A. Talik, L.W. Yew, Ultraviolet Laser Diode Ablation Process for CMOS 45 nm Copper Low-K Semiconductor Wafer, Procedia Engineering 184 (2017) 360-369. [30] I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, Internal modification of glass by ultrashort laser pulse and its application to microwelding, Applied Physics A 114 (2014) 187-208. [31] T. Takekuni, Y. Okamoto, T. Fujiwara, A. Okada, I. Miyamoto, Effects of Focusing Condition on Micro-welding Characteristics of Borosilicate Glass by Picosecond Pulsed Laser. Key Engineering Materials, (2015) 656-657 (2015) 461-467. [32] A. Yadav, H. Kbashi, S. Kolpakov, N. Gordon, K. Zhou, E.U. Rafailov, Stealth dicing of sapphire wafers with near infra-red femtosecond pulses, Applied Physics A 123 (2017) 369. [33] N. Suzuki, T. Nakamura, Y. Kondo, S. Tominaga, K. Atsumi, T. Ohba, Damage-Less Singulation of Ultra-Thin Wafers using Stealth Dicing, IEEE 70th ECTC (2020) 1043-1049. [34] K. Mishchik, B. Chassagne, C. Javaux-Léger, C. Hönninger, E. Mottay, R. Kling, J. Lopez, Dash line glass- and sapphire-cutting with high power USP laser, Proceedings SPIE 9740 (2016) 97400W. [35] X. Fan, Y. Rong, G. Zhang, C. Wu, Y. Luo, Y. Huang, Combined laser cutting process for interior holes in thick glasses, Journal of Non-Crystalline Solids vol. 621 (2023) 122647 [36] Y. Rong, L. Wang, T. Zhang, M. Li, Y. Huang, G. Zhang, C. Wu, Precision cutting of epoxy resin board (ERB) by ultraviolet (UV) nanosecond laser ablation with consideration of hazardous gas protection, Optik 241 (2021) 167154. [37] R.P. Zeilmann, R.D. Conrado, Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser, Procedia CIRP 108 (2022) 367-371. [38] H. Dong, Y. Huang, W. Li, J. Li, Y. Rong, Error analysis in 532 nm nanosecond laser cutting of solar glass, Optik 231 (2021) 166451. [39]M. G. Berhe, H. G. Oh, S.-K. Park b, D. Lee , Laser cutting of silicon anode for lithium-ion batteries, Journal of Materials Research and Technology 16 (2022) 322-334. [40] K. Liao, W. Wang, X. Mei, B. Liu , High quality full ablation cutting and stealth dicing of silica glass using picosecond laser Bessel beam with burst mode, Ceramics International 48(7) (2022) 9805-9806. [41] C. Chen, Y. Wang, Y. Huang, Y. Rong, Influence of helix geometric parameters on surface quality during laser cutting of photovoltaic float glass, Optik 220 (2020) 164985. [42] W. Li, Y. Rong, W. Liu, G. Zhang, H. Wang, Y. Huang, Z. Gao, Investigation of solar float glass hole cutting using 532 nm nanosecond pulsed laser, Optik 222 (2020) 165457. [43] X. Chen, C. Liu, J. Ke, J. Zhang, X. Shu, J. Xu, Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon, Materials & Design 190 (2020) 108524. [44] S. Huang, Z. Fu, C. Liu, Changsong Wang, Interactional relations between ablation and heat affected zone (HAZ) in laser cutting of glass fiber reinforced polymer (GFRP) composite by fiber laser, Optics & Laser Technology 158 (2023) 108796. [45] J. Yan, T.-H. Tan, Sintered diamond as a hybrid EDM and grinding tool for the micromachining of single-crystal SiC, CIRP Annals 64(1) (2015) 221-224. [46] Q. Wen, Y. Yang, J. Lu, H. Huang, C. Cui, Study on picosecond laser stealth dicing of 4H-SiC along [112 ̅0] and [11 ̅00] crystal orientations on Si-face and C-face, Optics & Laser Technology 162 (2023) 109300. [47] Y. Huang, X. Wu, H. Liu, H. Jiang, Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser, Journal of Micromechanics and Microengineering 27 (2017) 065005. [48] B.S. Yilbas, M.M. Shaukat, F. Ashraf, Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process, Optics & Laser Technology 93 (2017) 67-73. [49] C. Liu, X. Zhang, G. Wang, Z. Wang, L. Gao, New ablation evolution behaviors in micro-hole drilling of 2.5D Cf/SiC composites with millisecond laser, Ceramics International 47(21) (2021) 29670-29680. [50] J. Wei, S. Yuan, J. Zhang, N. Zhou, W. Zhang, J. Li, W. An, M. Gao, Y. Fu, Femtosecond laser ablation behavior of SiC/SiC composites in air and water environment, Corrosion Science 208 (2022) 110671. [51] S. Cvetković, C. Morsbach, L. Rissing, Ultra-precision dicing and wire sawing of silicon carbide (SiC), Microelectronic Engineering 88 (2011) 2500-2504. [52] 陳明飛,莊家榮,吳澤宏,“應用灰色關聯理論分析於導光板PMMA材料雷射切割之研究”,2008機光電技術與應用研討會,2008。 [53] Y. Wang, C. Li, S. Sun, F. Jiang, S. Liu, Experiment and study in laser-chemical combined machining of silicon carbide on grooves microstructure, Materials Research Express 6 (2019) 075106. [54] B. Pecholt, M. Vendan, Y. Dong, P. Molian, Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication, The International Journal Advanced Manufacturing Technology 39 (2008) 239-250. [55] Q.Z. Zheng, Z.J. Fan, G.D. Jiang, A.F. Pan, Z.X. Yan, Q.Y. Lin, J.L. Cui, W.J. Wang, X.S. Mei , Mechanism and morphology control of underwater femtosecond laser microgrooving of silicon carbide ceramics, Optics Express 27(19) (2019) 26264-26280. [56] Y. Dong, P. Molian, Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Applied Physics Letters 84(1) (2004) 10-12. [57] I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun, H. Kim, A.M. Chitu, J.S. Im , R.S. Ruoff, S.Y. Choi, K.J. Lee, Laser-induced phase separation of silicon carbide. Nature Communications 7 (2016) 13562. [58] Y. Zhao, Y.L. Zhao, L.K. Wang, Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor. Sensors and Actuators A: Physical 309 (2020) 112017. [59] R. Zhang, C. Huang, J. Wang, H. Zhu, P. Yao, S. Feng, Micromachining of 4H-SiC using femtosecond laser, Ceramics International 44(15) (2018) 17775-17783. [60] S. Hönig, F. Süß, N. Jain, R. Jemmali, T. Behrendt, B. Mainzer, D. Koch, Evaluation of preparation and combustion rig tests of an effusive cooled SiC/SiCN panel, Applied Ceramic Technology 17(4) (2020) 1562-1573. [61] Saurabh Gupta and Pal Molian, Design of laser micromachined single crystal 6H–SiC diaphragms for high-temperature micro-electro-mechanical-system pressure sensors, Materials & Design 32(1) (2011) 127-132. [62] L. Sun, C. Han, N. Wu, B. Wang, Y. Wang, High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition, Royal Society of Chemistry 8 (2018) 13697-13707. [63] M.S. Chandrasekar, N.R. Srinivasan, Role of SiOx on the photoluminescence properties of β-SiC. Ceramics International 42(7) (2016) 8900-8908. [64] Y. Huang, F. Tang, Z. Guo, X. Wang, Accelerated ICP etching of 6H-SiC by femtosecond laser modification. Applied Surface Science 488 (2019) 853-864. [65] M.M. Kamble, V.S. Waman, A.H. Mayabadi, S.S. Ghosh, B.B. Gabhale, S.R. Rondiya, A.V. Rokade, S.S. Khadtare, V.G. Sathe, T. Shripathi, H.M. Pathan, S.W. Gosavi, S.R. Jadkar, Hydrogenated Silicon Carbide Thin Films Prepared with High Deposition Rate by Hot Wire Chemical Vapor Deposition Method. Journal of Coatings 2014 (2014) 905903. [66] Q. Tian, N. Huang, B. Yang, H. Zhuang, C. Wang, Z. Zhai, J. Li, X. Jia, L. Liu, X. Jiang , Diamond/β-SiC film as adhesion-enhanced interlayer for top diamond coatings on cemented tungsten carbide substrate. Journal of Materials Science & Technology 33(10) (2017) 1097-1106. [67] J.G. Kim, E.J. Jung, Y. Kim, Y. Makarov, D.J. Choi, Quality improvement of single crystal 4H SiC grown with apurifi ed β-SiC powder source, Ceramics International 40(3) (2014) 3953-3959. [68] X. Wang, Y. Ji, M. Zhang, Y. Zhao, Y. Chen, Z. Zhao, S. Pan, H. Wang, Damage effects in 6H-SiC single crystals by Si&H dual ion irradiation: A combined Raman and XRD study 485 (2020) 20-25. [69] S. Urban, F. Falk, Laser crystallization of amorphous SiC thin films on glass, Applied Surface Science 184(1-4) (2001) 356-361. [70] S. Nakashima and H. Harima, Raman Investigation of SiC Polypes, Physica status solidi. A, Applied research 162 (1997) 39-64. [71] Digregorio and Furtak, Analysis of residual stress in 6H-SiC particles within Al2O3/SiC composites through Raman spectroscopy, Journal of the American Ceramic Society 75 (1992) 1854-1857. [72] Y. Hijikata, H. Yaguchi, M. Yoshikawa, S. Yoshida, Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films, Applied Surface Science 184(1-4) (2001) 161-166.
|