跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅晟興
研究生(外文):LUO, CHENG-XING
論文名稱:紫外光雷射切割6H-SiC參數最佳化及特性研究
論文名稱(外文):Research on optimal parameters and characteristics of UV laser dicing 6H-SiC
指導教授:曾釋鋒
指導教授(外文):TSENG, SHIH-FENG
口試委員:曾釋鋒張天立張元震
口試委員(外文):TSENG, SHIH-FENGCHANG, TIEN-LICHANG, YUAN-JEN
口試日期:2024-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:72
中文關鍵詞:6H-SiC碳化矽第三代半導體材料雷射切割紫外光雷射灰色關聯分析材料特性分析
外文關鍵詞:6H-SiCsilicon carbide3rd semiconductor materialslaser dicingUV laserparameter analysismaterials characteristics analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用355 nm波長之奈秒紫外光脈衝雷射,針對厚度350 μm之6H-SiC(0001)材料進行雷射切割。實驗透過參數變更法,變更不同之雷射平均功率、雷射脈衝頻率、掃描速度與掃描次數等參數,進行加工前後之表面形貌及切割道表面元素及結構變化進行分析,同時與使用鑽石輪刀切割技術之試片進行了比較。最終使用灰色關聯分析法進行參數最佳化,求得最佳之切割參數。實驗結果顯示,雷射功率與掃描次數增加,以及掃描速度降低,將使得雷射切割槽之寬度及深度增加。而單獨改變雷射脈衝頻率,則因雷射能量與兩發脈衝之間距互補,使切割槽尺寸無明顯變化。最終使用灰色關聯分析,發現使用雷射平均功率6 W、雷射脈衝頻率60 kHz與掃描速度5 mm/s之雷射切割參數進行3次分層切割,可得最佳之表面形貌與結構完整度。其切割槽寬度為18.6 μm,相較鑽石輪刀切割槽寬度減少15.1 μm。同時具有最佳之深寬比17.68及斷面角度88.45°。在橫向及軸向之殘餘應力分別為2.1 GPa與8.11 GPa,氧化程度36.18 at%則為完整切割之最低數值。證明奈秒紫外光脈衝雷射用於切割碳化矽等第三代半導體材料之可行性。
This study aims to use a nanosecond ultraviolet pulse laser with a wavelength of 355 nm to perform laser cutting on 6H-SiC(0001) material with a thickness of 350 μm. Through the parameter variation, different parameters such as the average laser power, laser pulse frequency, speed, and scanning times were adjusted to analyze the surface morphology and changes in surface elements and structures before and after processing. A comparison was also made with samples cut using diamond wheel cutting technology. Finally, grey relational analysis was used to optimize the parameters and determine the best cutting parameters. The experimental results showed that increasing the laser power and scanning times and decreasing the scanning speed would increase the width and depth of the laser cutting groove. However, changing only the laser pulse frequency did not significantly alter the size of the cutting groove due to the complementary relationship between laser energy and the spacing between two pulses. Through grey relational analysis, it was found that using a laser average power of 6 W, a laser pulse frequency of 60 kHz, and a scanning speed of 5 mm/s for laser cutting resulted in optimal surface morphology and structural integrity. The width of the cutting groove was 18.6 μm, which was 15.1 μm less than that of the diamond wheel cutting. It also exhibited an optimal aspect ratio of 17.68 and a cross-sectional angle of 88.45 °. The residual stresses in the transverse and axial directions were 2.1 GPa and 8.11 GPa, respectively, and the degree of oxidation was 36.18 at%, representing the lowest values for complete cutting. This demonstrates the feasibility of using nanosecond ultraviolet pulse lasers for cutting third-generation semiconductors such as silicon carbide.
摘要 i
ABSTRACT ii
致謝 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 碳化矽材料性質概述 3
1.3 奈秒紫外光雷射加工技術概述 3
1.4 研究動機與目的 4
1.5 論文架構 4
第二章 文獻回顧 6
2.1雷射切割應用 6
2.2剝蝕移除材料與HAZ關係 15
2.3碳化矽切割探討 16
2.4重鑄層及移除方式 17
2.5鑽石輪刀切割研究 21
第三章 實驗設備與細節 22
3.1實驗規劃 22
3.2紫外光加工設備 24
3.3測量儀器 25
3.4 實驗試片 26
3.5單次切割 28
3.5.1雷射切割道深寬度量測 29
3.5.2雷射剝蝕閥值 30
3.6完整切割 31
3.7實驗參數 31
3.8灰色關聯分析 33
(3.8.1)灰關聯實驗規格表 33
(3.8.2)結果序列正規化 34
(3.8.3)灰色關連生成 34
(3.8.4)灰色關連係數與序列 35
(3.8.5)灰色關連反應表/反應圖 36
第四章 結果與討論 37
4.1雷射剝蝕閥值 37
4.2雷射切割參數對剝蝕深度與寬度之影響 38
4.3雷射切割參數對加工時間之影響 42
4.4加工參數對切割槽深寬比與斷面角度比較 44
4.5雷射切割後之SiC形貌和成分分析 45
4.6 切割後SiC試片XPS分析 49
4.7 切割後SiC試片之XRD分析 55
4.8 Raman殘留應力分析 56
4.9 灰色分析 59
第五章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
參考文獻 65
[1] Future Generation Computer Systems 29 (2013) 1645–1660.
[2] TechNews. Gartner 2018 年新興技術發展週期報告:人類與機器的界線更難劃分. Technews. 2018, August 27: https://technews.tw/2018/08/27/gartner-2018-hype-cycle-for-emerging-technologies/
[3] Panetta K, 5 Trends Appear on the Gartner Hype Cycle for Emerging Technologies, 2019 Gartner, (2019): https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019/
[4] Panetta K, 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies, 2020. Gartner, (2021): https://www.gartner.com/smarterwithgartner/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020/
[5] F. Roccaforte, P. Fiorenza, G. Greco, R. L. Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectronic Engineering 187-188 (2018) 66-77.
[6] B. Pecholt, S. Gupta, P. Molian, Review of laser microscale processing of silicon carbide, Journal of Laser Applications 23 (2001) 012008.
[7] Z. Huang, T.-Y. Lü, H.-Q. Wang, J.-C. Zheng, Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO, AIP Advances 5 (2015) 097204.
[8] M.C. Righi, C.A. Pignedoli, G. Borghi, R.D. Felice, C.M. Bertoni, A. Catellani, Surface-induced stacking transition at SiC(0001). Physical Review B 66 (2002) 045320.
[9] C. Leone, S. Genna, V. Tagliaferri, An integrated approach for the modelling of silicon carbide components laser milling process, The International Journal Advanced Manufacturing Technology 116 (2021) 2335-2357.
[10] B. Meng, J. Zheng, D. Yuan, S. Xu, Machinability improvement of silicon carbide via femtosecond laser surface modification method, Applied Physics A 125 (2019) 69.
[11] P.-C. Chen, W.-C. Miao, T. Ahmed, Y.-Y. Pan, C.-L. Lin, S.-C. Chen, H.-C. Kuo, B.-Y. Tsui, D.-H. Lien , Defect Inspection Techniques in SiC, Nanoscale Research Letters 17 (2022) 30.
[12] H. Shi, Q. Song, Y. Hou, S. Yue, Y. Li, Z. Zhang, M. Li, K. Zhang, Z. Zhang, Investigation of structural transformation and residual stress under single femtosecond laser pulse irradiation of 4H–SiC, Ceramics International 48 (2022) 24276-24282.
[13] B. Zhang, S. He, Q. Yang, H. Liu, L. Wang, F. Chen, Femtosecond laser modification of 6H–SiC crystals for waveguide devices, Applied Physics Letters 116 (2020) 111903.
[14] S. Salvatori, G.S. Ponticelli, S. Pettinato, S. Genna, S. Guarino, High-Pressure Sensors Based on Laser-Manufactured Sintered Silicon Carbide, Applied Sciences 10(20) (2020) 7095.
[15] B. Mills, J.A. Grant-Jacob, Lasers that learn: The interface of laser machining and machine learning, The Institution of Engineering and Technology 15(5) (2021) 207-224.
[16] T. Anderson, F. Ren, S.J. Pearton, M.A. Mastro, R.T. Holm, R.L. Henry, C. R. Eddy, J.Y. Lee, K.Y. Lee, J. Kim, Laser ablation of via holes in GaN and AlGaN∕GaN high electron mobility transistor structures, Journal of Vacuum Science & Technology B 24(5) (2006) 2246-2249.
[17] D. Li, G. Cheng, Z. Yang, Y. Wang, Ultrafast Laser Machine Based on All-fiber Femtosecond Laser System, Advanced Materials Research 652-654 (2013) 2374-2377.
[18] D.H. Du, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide. International Journal of Heat and Mass Transfer 65 (2013) 713-718.
[19] F. Inoue, A. Phommahaxay, A. Podpod, S. Suhard, H. Hoshino, B. Moeller, E. Sleeckx, K.J. Rebibis, A. Miller, E. Beyne, Advanced Dicing Technologies for Combination of Wafer to Wafer and Collective Die to Wafer Direct Bonding, 2019 IEEE 69th ECTC (2019) 437-445.
[20] E. Kim, Y.S. Shimotsuma, M. Sakakura, K. Miura, 4H-SiC wafer slicing by using femtosecond laser double-pulses, Optical Materials Express 7 (2017) 2450-2460.
[21] A. Hooper, J. Ehorn, M. Bread, C. Bassett, Review of Wafer Dicing Techniques for Via-Middle Process 3DI/TSV Ultrathin Silicon Device Wafers, 2015 IEEE 65th ECTC (2015) 1436-1446.
[22] S. Bai, K. Sugioka, Recent Advances in the Fabrication of Highly Sensitive Surface-Enhanced Raman Scattering Substrates: Nanomolar to Attomolar Level Sensing, Light: Advanced Manufacturing 2 (2021) 13.
[23] H. Liu, W. Lin, M. Hong, Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications, Light: Science & Applications 10 (2021) 162.
[24] Stealth laser dicing engine lineup, DISCO Technical Review Feb (2016).
[25] S. Kivistö, T. Amberla, T. Konnunaho, J. Kangastupa, J. Sillanpää, X-Lase CoreScriber, picosecond fiber laser tool for high-precision scribing and cutting of transparent materials, Physics Procedia 41 (2013) 589-591.
[26] M. Antti, H. Ville, V. Jorma, Precise online auto-focus system in high speed laser micromachining applications, Physics Procedia 39 (2012) 807-813.
[27] X. Xie, F. Huang, X. Wei, W. Hu, Q. Ren, X. Yuan, Modeling and optimization of pulsed green laser dicing of sapphire using response surface methodology, Optics & Laser Technology 45 (2013) 125-131.
[28] C. Fornaroli, J. Holtkamp, A. Gillner, Dicing of thin Si wafers with a picosecond laser ablation process, Physics Procedia 41 (2013) 603-609.
[29] K.W. Shi, Y.B. Kar, N.A. Talik, L.W. Yew, Ultraviolet Laser Diode Ablation Process for CMOS 45 nm Copper Low-K Semiconductor Wafer, Procedia Engineering 184 (2017) 360-369.
[30] I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, Internal modification of glass by ultrashort laser pulse and its application to microwelding, Applied Physics A 114 (2014) 187-208.
[31] T. Takekuni, Y. Okamoto, T. Fujiwara, A. Okada, I. Miyamoto, Effects of Focusing Condition on Micro-welding Characteristics of Borosilicate Glass by Picosecond Pulsed Laser. Key Engineering Materials, (2015) 656-657 (2015) 461-467.
[32] A. Yadav, H. Kbashi, S. Kolpakov, N. Gordon, K. Zhou, E.U. Rafailov, Stealth dicing of sapphire wafers with near infra-red femtosecond pulses, Applied Physics A 123 (2017) 369.
[33] N. Suzuki, T. Nakamura, Y. Kondo, S. Tominaga, K. Atsumi, T. Ohba, Damage-Less Singulation of Ultra-Thin Wafers using Stealth Dicing, IEEE 70th ECTC (2020) 1043-1049.
[34] K. Mishchik, B. Chassagne, C. Javaux-Léger, C. Hönninger, E. Mottay, R. Kling, J. Lopez, Dash line glass- and sapphire-cutting with high power USP laser, Proceedings SPIE 9740 (2016) 97400W.
[35] X. Fan, Y. Rong, G. Zhang, C. Wu, Y. Luo, Y. Huang, Combined laser cutting process for interior holes in thick glasses, Journal of Non-Crystalline Solids vol. 621 (2023) 122647
[36] Y. Rong, L. Wang, T. Zhang, M. Li, Y. Huang, G. Zhang, C. Wu, Precision cutting of epoxy resin board (ERB) by ultraviolet (UV) nanosecond laser ablation with consideration of hazardous gas protection, Optik 241 (2021) 167154.
[37] R.P. Zeilmann, R.D. Conrado, Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser, Procedia CIRP 108 (2022) 367-371.
[38] H. Dong, Y. Huang, W. Li, J. Li, Y. Rong, Error analysis in 532 nm nanosecond laser cutting of solar glass, Optik 231 (2021) 166451.
[39]M. G. Berhe, H. G. Oh, S.-K. Park b, D. Lee , Laser cutting of silicon anode for lithium-ion batteries, Journal of Materials Research and Technology 16 (2022) 322-334.
[40] K. Liao, W. Wang, X. Mei, B. Liu , High quality full ablation cutting and stealth dicing of silica glass using picosecond laser Bessel beam with burst mode, Ceramics International 48(7) (2022) 9805-9806.
[41] C. Chen, Y. Wang, Y. Huang, Y. Rong, Influence of helix geometric parameters on surface quality during laser cutting of photovoltaic float glass, Optik 220 (2020) 164985.
[42] W. Li, Y. Rong, W. Liu, G. Zhang, H. Wang, Y. Huang, Z. Gao, Investigation of solar float glass hole cutting using 532 nm nanosecond pulsed laser, Optik 222 (2020) 165457.
[43] X. Chen, C. Liu, J. Ke, J. Zhang, X. Shu, J. Xu, Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon, Materials & Design 190 (2020) 108524.
[44] S. Huang, Z. Fu, C. Liu, Changsong Wang, Interactional relations between ablation and heat affected zone (HAZ) in laser cutting of glass fiber reinforced polymer (GFRP) composite by fiber laser, Optics & Laser Technology 158 (2023) 108796.
[45] J. Yan, T.-H. Tan, Sintered diamond as a hybrid EDM and grinding tool for the micromachining of single-crystal SiC, CIRP Annals 64(1) (2015) 221-224.
[46] Q. Wen, Y. Yang, J. Lu, H. Huang, C. Cui, Study on picosecond laser stealth dicing of 4H-SiC along [112 ̅0] and [11 ̅00] crystal orientations on Si-face and C-face, Optics & Laser Technology 162 (2023) 109300.
[47] Y. Huang, X. Wu, H. Liu, H. Jiang, Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser, Journal of Micromechanics and Microengineering 27 (2017) 065005.
[48] B.S. Yilbas, M.M. Shaukat, F. Ashraf, Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process, Optics & Laser Technology 93 (2017) 67-73.
[49] C. Liu, X. Zhang, G. Wang, Z. Wang, L. Gao, New ablation evolution behaviors in micro-hole drilling of 2.5D Cf/SiC composites with millisecond laser, Ceramics International 47(21) (2021) 29670-29680.
[50] J. Wei, S. Yuan, J. Zhang, N. Zhou, W. Zhang, J. Li, W. An, M. Gao, Y. Fu, Femtosecond laser ablation behavior of SiC/SiC composites in air and water environment, Corrosion Science 208 (2022) 110671.
[51] S. Cvetković, C. Morsbach, L. Rissing, Ultra-precision dicing and wire sawing of silicon carbide (SiC), Microelectronic Engineering 88 (2011) 2500-2504.
[52] 陳明飛,莊家榮,吳澤宏,“應用灰色關聯理論分析於導光板PMMA材料雷射切割之研究”,2008機光電技術與應用研討會,2008。
[53] Y. Wang, C. Li, S. Sun, F. Jiang, S. Liu, Experiment and study in laser-chemical combined machining of silicon carbide on grooves microstructure, Materials Research Express 6 (2019) 075106.
[54] B. Pecholt, M. Vendan, Y. Dong, P. Molian, Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication, The International Journal Advanced Manufacturing Technology 39 (2008) 239-250.
[55] Q.Z. Zheng, Z.J. Fan, G.D. Jiang, A.F. Pan, Z.X. Yan, Q.Y. Lin, J.L. Cui, W.J. Wang, X.S. Mei , Mechanism and morphology control of underwater femtosecond laser microgrooving of silicon carbide ceramics, Optics Express 27(19) (2019) 26264-26280.
[56] Y. Dong, P. Molian, Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Applied Physics Letters 84(1) (2004) 10-12.
[57] I. Choi, H.Y. Jeong, H. Shin, G. Kang, M. Byun, H. Kim, A.M. Chitu, J.S. Im , R.S. Ruoff, S.Y. Choi, K.J. Lee, Laser-induced phase separation of silicon carbide. Nature Communications 7 (2016) 13562.
[58] Y. Zhao, Y.L. Zhao, L.K. Wang, Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor. Sensors and Actuators A: Physical 309 (2020) 112017.
[59] R. Zhang, C. Huang, J. Wang, H. Zhu, P. Yao, S. Feng, Micromachining of 4H-SiC using femtosecond laser, Ceramics International 44(15) (2018) 17775-17783.
[60] S. Hönig, F. Süß, N. Jain, R. Jemmali, T. Behrendt, B. Mainzer, D. Koch, Evaluation of preparation and combustion rig tests of an effusive cooled SiC/SiCN panel, Applied Ceramic Technology 17(4) (2020) 1562-1573.
[61] Saurabh Gupta and Pal Molian, Design of laser micromachined single crystal 6H–SiC diaphragms for high-temperature micro-electro-mechanical-system pressure sensors, Materials & Design 32(1) (2011) 127-132.
[62] L. Sun, C. Han, N. Wu, B. Wang, Y. Wang, High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition, Royal Society of Chemistry 8 (2018) 13697-13707.
[63] M.S. Chandrasekar, N.R. Srinivasan, Role of SiOx on the photoluminescence properties of β-SiC. Ceramics International 42(7) (2016) 8900-8908.
[64] Y. Huang, F. Tang, Z. Guo, X. Wang, Accelerated ICP etching of 6H-SiC by femtosecond laser modification. Applied Surface Science 488 (2019) 853-864.
[65] M.M. Kamble, V.S. Waman, A.H. Mayabadi, S.S. Ghosh, B.B. Gabhale, S.R. Rondiya, A.V. Rokade, S.S. Khadtare, V.G. Sathe, T. Shripathi, H.M. Pathan, S.W. Gosavi, S.R. Jadkar, Hydrogenated Silicon Carbide Thin Films Prepared with High Deposition Rate by Hot Wire Chemical Vapor Deposition Method. Journal of Coatings 2014 (2014) 905903.
[66] Q. Tian, N. Huang, B. Yang, H. Zhuang, C. Wang, Z. Zhai, J. Li, X. Jia, L. Liu, X. Jiang , Diamond/β-SiC film as adhesion-enhanced interlayer for top diamond coatings on cemented tungsten carbide substrate. Journal of Materials Science & Technology 33(10) (2017) 1097-1106.
[67] J.G. Kim, E.J. Jung, Y. Kim, Y. Makarov, D.J. Choi, Quality improvement of single crystal 4H SiC grown with apurifi ed β-SiC powder source, Ceramics International 40(3) (2014) 3953-3959.
[68] X. Wang, Y. Ji, M. Zhang, Y. Zhao, Y. Chen, Z. Zhao, S. Pan, H. Wang, Damage effects in 6H-SiC single crystals by Si&H dual ion irradiation: A combined Raman and XRD study 485 (2020) 20-25.
[69] S. Urban, F. Falk, Laser crystallization of amorphous SiC thin films on glass, Applied Surface Science 184(1-4) (2001) 356-361.
[70] S. Nakashima and H. Harima, Raman Investigation of SiC Polypes, Physica status solidi. A, Applied research 162 (1997) 39-64.
[71] Digregorio and Furtak, Analysis of residual stress in 6H-SiC particles within Al2O3/SiC composites through Raman spectroscopy, Journal of the American Ceramic Society 75 (1992) 1854-1857.
[72] Y. Hijikata, H. Yaguchi, M. Yoshikawa, S. Yoshida, Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films, Applied Surface Science 184(1-4) (2001) 161-166.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top