|
[1]G. Wu, L. Xiang, W. Wang, C. Yao, Z. Yan, C. Zhang, J. Wu, Y. Liu, B. Zheng, H. Liu, C. Hu, X. Sun, C. Zhu, Y. Wang, X. Xiong, Y. Wu, L. Gao, D. Li, A. Pan, S. Li, Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system, Science Bulletin 69(4) (2024) 473-482. [2]J. Yin, X. Liu, B. Guan, Z. Ma, T. Zhang, Performance analysis and energy saving potential of air conditioning system in semiconductor cleanrooms, Journal of Building Engineering 37 (2021) 102158. [3]N. Watanabe, T. Mizutani, H. Nagano, High-performance energy-saving miniature loop heat pipe for cooling compact power semiconductors, Energy Conversion and Management 236 (2021) 114081. [4]C.-F. Chien, J.-T. Peng, H.-C. Yu, Building energy saving performance indices for cleaner semiconductor manufacturing and an empirical study, Computers & Industrial Engineering 99 (2016) 448-457. [5]J. Lepawsky, Climate change induced water stress and future semiconductor supply chain risk, iScience 27(2) (2024) 108791. [6]M. Mahachi, H. Moukala, A. Ismail, A. Hopf, H. Ehm, Simulating the COVID19-pandemic and its impact on the semiconductor supply chain: Enabling a supply chain risk management framework, IFAC-PapersOnLine 55(10) (2022) 2215-2220. [7]Q. Wang, N. Huang, H. Cai, X. Chen, Y. Wu, Water strategies and practices for sustainable development in the semiconductor industry, Water Cycle 4 (2023) 12-16. [8]C.-F. Chien, C.-Y. Hsu, J.R. Morrison, R. Dou, Semiconductor manufacturing intelligence and automation, Computers & Industrial Engineering 99 (2016) 315-317. [9]2023年半導體產業發展趨勢 (2023); Available from: https://outlook.stpi.narl.org.tw/index/focusnews/4b1141008803288e018803995d0e0122 [10]S. Sidaoui, A. Ghoudi, A. Oueslati, M. Raduca, M. Badea, M. Andruh, S. Nasr, H. Naïli, W. Rekik, Crystal structure, thermal behavior and electric properties of a new semiconductor cobalt-based hybrid material, Journal of Molecular Structure 1294 (2023) 136394. [11]X. Hei, J. Li, All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures, Chemical Science 12(11) (2021) 3805-3817. [12]Z. Wang, C. Wang, M. Tomizuka, Vibration cancellation of semiconductor manufacturing robots, Manufacturing Letters 4 (2015) 6-9. [13]W. Aribowo, T. Yamashita, K. Terashima, Y. Masui, T. Saeki, T. Kamigaki, H. Kawamura, Vibration Control of Semiconductor Wafer Transfer Robot by Building an Integrated Tool of Parameter Identification and Input Shaping, IFAC Proceedings Volumes 44(1) (2011) 14367-14373. [14]G. Zhu, X. Zeng, Z. Gao, Z. Gong, W. Duangmu, Y. Zeng, C. Lu, Study on vibration stability of aircraft engine blades polished by robot controlled pneumatic grinding wheel, Journal of Manufacturing Processes 99 (2023) 636-651. [15]A. Buerkle, W. Eaton, N. Lohse, T. Bamber, P. Ferreira, EEG based arm movement intention recognition towards enhanced safety in symbiotic Human-Robot Collaboration, Robotics and Computer-Integrated Manufacturing 70 (2021) 102137. [16]M. Fernández Campo, F.J. Hernandez González, I. Bachiller Martínez, Safety considerations of on-ground operations for demonstration of multi arm robot of in-orbit telescope installation (MIRROR), Journal of Space Safety Engineering 10(1) (2023) 70-75. [17]A. Grabowski, R. Kosiński, M. Dźwiarek, Vision based safety system for human and robot arm detection* *The research was supported by the Ministry of Science and Higher Education, National Program “Improvement of Safety and Working Conditions” project No. 4.R.03, CIOP-PIB (2008-2010), IFAC Proceedings Volumes 42(16) (2009) 68-72. [18]J. Seo, H. Shin, S. Cho, S. Lee, W. Ryu, S.-C. Han, D.H. Kim, G.H. Kang, A phased array ultrasound system with a robotic arm for neuromodulation, Medical Engineering & Physics 118 (2023) 104023. [19]H. Jiao, K. Yang, S. Sang, Z. Pei, R. Guo, H. Shi, W. Wang, Graphene-based flexible temperature/pressure dual-mode sensor as a finger sleeve for robotic arms, Diamond and Related Materials 142 (2024) 110799. [20]V. Feliu, F. Ramos, Strain gauge based control of single-link flexible very lightweight robots robust to payload changes, Mechatronics 15(5) (2005) 547-571. [21]Flexible Electronics Market By Components (Display, Battery, Sensors, Memory), By Application (Consumer Electronics, Automotive, Healthcare, Industrial) And Segment Forecast To 2024 (2016); Available from: https://www.grandviewresearch.com/industry-analysis/flexible-electronics-market. [22]M. Mehrabi, V. Vatanpour, Polyimide-based separation membranes for liquid separation: A review on fabrication techniques, applications, and future perspectives, Materials Today Chemistry 35 (2024) 101895. [23]E. Toto, M.G. Santonicola, S. Laurenzi, C. Circi, R.C. Pellegrini, E. Cavallini, E. Serra, S. Scaglione, D. Zola, UV–VIS-NIR optical properties of micrometric-thick polyimide membranes for lightweight devices in space, Optical Materials 146 (2023) 114604. [24]J.H. Kim, H.S. Jung, Y.S. Chi, T.J. Kang, Applying porous polyimide films in fibrous dye-sensitized solar cells, Solar Energy 86(9) (2012) 2606-2612. [25]R.L. Streng, S. Vagin, Y. Guo, B. Rieger, A.S. Bandarenka, Identifying the charge storage mechanism in polyimide anodes for Na-ion aqueous batteries by impedance spectroscopy††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ya00037d, Energy Advances 3(4) (2024) 874-882. [26]C. Yi, W. Li, S. Shi, K. He, P. Ma, M. Chen, C. Yang, High-temperature-resistant and colorless polyimide: Preparations, properties, and applications, Solar Energy 195 (2020) 340-354. [27]G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review, Science and Technology of Advanced Materials 19(1) (2018) 613-648. [28]S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays, Carbon 96 (2016) 522-531. [29]L. Wang, K. Yin, Q. Deng, Q. Huang, C.J. Arnusch, Multiscale hybrid-structured femtosecond laser-induced graphene with outstanding photo-electro-thermal effects for all-day anti-icing/deicing, Carbon 219 (2024) 118824. [30]L. Mao, T. Pan, L. Lin, Y. Ke, H. Su, Y. Li, W. Huang, T. Li, Y. Lin, Simultaneously enhancing sensitivity and operation range of flexible pressure sensor by constructing a magnetic-guided microstructure in laser-induced graphene composite, Chemical Engineering Journal 481 (2024) 148639. [31]R. Nakashima, H. Takahashi, Triaxial tactile sensor utilizing standing laser-induced graphene cantilevers on polyimide film, Sensors and Actuators A: Physical 365 (2024) 114919. [32]M.R. Bobinger, F.J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli, D.P. Morales, N. Rodríguez, A. Rivadeneyra, Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates, Carbon 144 (2019) 116-126. [33]X. Yu, J. Zhang, N. Li, Y. Song, J. Kang, S. Zhang, C. Liu, Z. Li, J. Pu, N. Hong, M. Xi, Z. Wang, Laser-induced manganese oxide/graphene composite electrodes with commercial-level mass loading towards high-performance supercapacitors, Journal of Alloys and Compounds 969 (2023) 172435. [34]M. Luo, Z. Zhu, L. Huang, Y. Gao, Optimization growth of graphene on annealed copper and its application as glucose sensor material, Materials Science in Semiconductor Processing 173 (2024) 108147. [35]Y. Guan, Q. Zhang, W. Yang, Z. Li, H. Wang, J. Gao, Q. Jiao, H. Du, L. Yang, L. Zhang, L. Yang, H. Chen, L. Zhang, A Highly-Sensitive Wearable Capacitance Pressure Sensor based on Calcium Copper Titanate/ Polydimethysiloxane/Graphene Oxide and Polydimethysiloxane/Silver Nanowires Sanwich Strustures Combination for Human Body Monitoring, Materials Chemistry and Physics (2024) 129345. [36]M. Poursoltani Zarandi, H. Beitollahi, Design of electrochemical sensor based on N-doped reduced graphene oxide/copper oxide nanocomposite and ionic liquid for the simultaneous determination of 4-aminophenol and acetaminophen, Microchemical Journal 181 (2022) 107726. [37]Y. Xiong, Y. Zhu, X. Liu, P. Zhu, Y. Hu, R. Sun, C.-P. Wong, A flexible pressure sensor based on melamine foam capped by copper nanowires and reduced graphene oxide, Materials Today Communications 24 (2020) 100970. [38]B. Sakthivel, G. Nammalvar, Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite, Journal of Alloys and Compounds 788 (2019) 422-428. [39]Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang, Y. Wang, S. Lu, R. Xu, J. Zhao, A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene, Carbon 156 (2020) 506-513. [40]Y. Yang, H. Wang, Y. Hou, S. Nan, Y. Di, Y. Dai, F. Li, J. Zhang, MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics, Composites Science and Technology 226 (2022) 109518. [41]X. Zhao, H. Guo, P. Ding, W. Zhai, C. Liu, C. Shen, K. Dai, Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring, Nano Energy 108 (2023) 108197. [42]S. Zhao, L. Liu, Y. Liu, Y. Zhou, M. Xia, Y. Zhang, Y. Li, D. Cao, Y. Gao, Y. Lai, Biomimetic design of gradient and hierarchical platform based on carbon nanotubes and porous carbon polyhedrons for strain sensors and beyond, Composites Science and Technology 237 (2023) 109998. [43]J. Lin, Y. Ai, W. Li, Y. Peng, Y. Liu, A. He, H. Nie, Flexible multi-modal sensors based on CNT hollow spheres/PDMS composites for human motion recognition and colloid concentration detection, Composites Science and Technology 237 (2023) 110005. [44]X. Guo, W. Hong, Y. Zhao, T. Zhu, H. Li, G. Zheng, J. Wang, G. Tang, J. Cao, Y. Wang, J. Yang, H. Zhang, D. Zhou, R. Feng, D. Xu, Q. Hong, Y. Xu, Bioinspired sandwich-structured pressure sensors based on graphene oxide/hydroxyl functionalized carbon nanotubes/bovine serum albumin nanocomposites for wearable textile electronics, Composites Part A: Applied Science and Manufacturing 163 (2022) 107240. [45]H. Yang, Q. Huang, S. Wang, Q. Zong, C. Tan, H. Ye, G. Zhang, Three-dimensional surface strain sensor based on PDMS/LIG composite film with adjustable electromechanical performance, Applied Surface Science 660 (2024) 159885. [46]Z. Chu, W. Jiao, Y. Huang, Y. Zheng, R. Wang, X. He, Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring, Journal of Materials Chemistry A 9(15) (2021) 9634-9643. [47]T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, G. Ding, Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors, Advanced Functional Materials 29(45) (2019) 1903732. [48]Z. Chen, Z. Yang, T. Yu, Z. Wei, C. Ji, B. Zhao, T. Yu, W. Yang, Y. Li, Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature monitoring with superlative temperature range and sensitivity, Composites Science and Technology 232 (2023) 109881. [49]L. Yang, W. Mao, J. Zhang, Q. Zhao, Y. Bie, Y. Hou, H. He, H. Huang, Y. Xu, Recycling of Flyash: Route toward high-performance, eco-friendly, and cost-effective flexible strain sensor via synergizing multi-walled carbon nanotubes, Surfaces and Interfaces 45 (2024) 103867. [50]Y. Jia, X. Yue, Y. Wang, C. Yan, G. Zheng, K. Dai, C. Liu, C. Shen, Multifunctional stretchable strain sensor based on polydopamine/ reduced graphene oxide/ electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring, Composites Part B: Engineering 183 (2020) 107696. [51]J. Gao, B. Li, X. Huang, L. Wang, L. Lin, H. Wang, H. Xue, Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring, Chemical Engineering Journal 373 (2019) 298-306. [52]A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications, Applied Physics Letters 113(8) (2018). [53]Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, B. Li, Highly Stretchable Core–Sheath Fibers via Wet-Spinning for Wearable Strain Sensors, ACS Applied Materials & Interfaces 10(7) (2018) 6624-6635. [54]X. Li, T. Hua, B. Xu, Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core, Carbon 118 (2017) 686-698. [55]S.-F. Tseng, Y.-H. Yang, Superhydrophobic graphene/ceramic templates for the preparation of particulate drugs, Ceramics International 48(2) (2022) 2021-2030. [56]S.-F. Tseng, P.-Y. Cheng, W.-T. Hsiao, M.-F. Chen, C.-K. Chung, P.-H. Wang, High-performance graphene-based heaters fabricated using maskless ultraviolet laser patterning, The International Journal of Advanced Manufacturing Technology 102(9) (2019) 3011-3020. [57]S. Bai, Y. Tang, L. Lin, L. Ruan, R. Song, H. Chen, Y. Du, H. Lin, Y. Shan, Y. Tang, Investigation of micro/nano formation mechanism of porous graphene induced by CO2 laser processing on polyimide film, Journal of Manufacturing Processes 84 (2022) 555-564. [58]L. Huang, H. Wang, P. Wu, W. Huang, W. Gao, F. Fang, N. Cai, R. Chen, Z. Zhu, Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber, Sensors 20(15) (2020) 4266. [59]I. Boukhoubza, M. Khenfouch, M. Achehboune, B. Mothudi, I. Zorkani, A. Jorio, X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide, Journal 1292(1) (Year) 012011. [60]T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon 50(8) (2012) 2994-3000. [61]Y. Li, X.R. Chang, X.J. Sang, J.S. Li, Y.H. Luo, Z.M. Zhu, W.S. You, Keggin‐Type Polyoxometalate Modified Ag/Graphene Composite Materials for Electrocatalytic Water Oxidation, European Journal of Inorganic Chemistry 2019(31) (2019) 3597-3604. [62]A. Kaushal, S. Dhawan, V. Singh, Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO), Journal 2115(1) (Year). [63]M. Cobos, I. De-La-Pinta, G. Quindós, M.J. Fernández, M.D. Fernández, Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties, Nanomaterials 10(2) (2020) 376. [64]S.B. Malik, A. Gul, J.I. Saggu, B.A. Abbasi, B. Azad, J. Iqbal, M. Kazi, W. Chalgham, S.A.M. Firoozabadi, Fabrication and Characterization of Ag-Graphene Nanocomposites and Investigation of Their Cytotoxic, Antifungal and Photocatalytic Potential, Molecules 28(10) (2023) 4139. [65]R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods, Ceramics International 45(11) (2019) 14439-14448. [66]A.M. Ektessabi, S. Hakamata, XPS study of ion beam modified polyimide films, Thin Solid Films 377-378 (2000) 621-625. [67]W.-J. Lee, Y.-S. Lee, S.-K. Rha, Y.-J. Lee, K.-Y. Lim, Y.-D. Chung, C.-N. Whang, Adhesion and interface chemical reactions of Cu/polyimide and Cu/TiN by XPS, Applied Surface Science 205(1) (2003) 128-136. [68]J. Zhang, M. Ren, L. Wang, Y. Li, B.I. Yakobson, J.M. Tour, Oxidized laser‐induced graphene for efficient oxygen electrocatalysis, Advanced Materials 30(21) (2018) 1707319. [69]Y. Zhang, C. Zhang, W. Chen, Z. Liu, One-step laser-induced Cu-embedded graphene for non-enzymatic glucose sensing in beverages, Journal of Alloys and Compounds 992 (2024) 174563. [70]L. Wang, Y. Tian, H. Ding, J. Li, Microstructure and properties of organosoluble polyimide/silica hybrid films, European Polymer Journal 42(11) (2006) 2921-2930. [71]Y. Lei, L. Zhang, L. Zhou, J. Yu, G. Zhao, L. Guo, D. Zhang, H. Qi, Proton irradiation-induced changes in the tribological performance of polyimide composites, Tribology International 167 (2022) 107427. [72]S. Naghdi, K. Nešović, G. Sánchez-Arriaga, H.Y. Song, S.W. Kim, K.Y. Rhee, V. Mišković-Stanković, The effect of cesium dopant on APCVD graphene coating on copper, Journal of Materials Research and Technology 9(5) (2020) 9798-9812. [73]Y. Yang, Y. Ping, Y. Gong, Z. Wang, Q. Fu, C. Pan, Ag/graphene composite based on high-quality graphene with high electrical and mechanical properties, Progress in Natural Science: Materials International 29(4) (2019) 384-389. [74]B. Jiang, C. Tian, G. Song, W. Chang, G. Wang, Q. Wu, H. Fu, A novel Ag/graphene composite: facile fabrication and enhanced antibacterial properties, Journal of Materials Science 48(5) (2013) 1980-1985. [75]M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Applied Surface Science 257(3) (2010) 887-898. [76]H. Wang, Z. Zhao, P. Liu, X. Guo, Laser-induced porous graphene on Polyimide/PDMS composites and its kirigami-inspired strain sensor, Theoretical and Applied Mechanics Letters 11(2) (2021) 100240. [77]S.-F. Tseng, C.-C. Huang, Investigation of interactions between high pulsed ultraviolet lasers and composite graphene/AgNWs films, Applied Surface Science 570 (2021) 151060. [78]S.-F. Tseng, C.-H. Liao, W.-T. Hsiao, T.-L. Chang, Ultrafast laser direct writing of screen-printed graphene-based strain electrodes for sensing glass deformation, Ceramics International 47(20) (2021) 29099-29108. [79]P. Song, G. Wang, Y. Zhang, Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors, Sensors and Actuators A: Physical 323 (2021) 112659. [80]Z. Wang, P. Li, R. Song, W. Qian, H. Zhou, Q. Wang, Y. Wang, X. Zeng, L. Ren, S. Yan, High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors, Science Bulletin 65(16) (2020) 1363-1370. [81]H. Kun, L. Bin, M. Orban, Q. Donghai, Y. Hongbo, Accurate Flexible Temperature Sensor Based on Laser-Induced Graphene Material, Shock and Vibration 2021(1) (2021) 9938010. [82]M. Marengo, G. Marinaro, J. Kosel, Flexible temperature and flow sensor from laser-induced graphene, Journal (Year) 1-3. [83]Q. Liu, H. Tai, Z. Yuan, Y. Zhou, Y. Su, Y. Jiang, A high‐performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real‐time monitoring, Advanced Materials Technologies 4(3) (2019) 1800594. [84]S. Harada, K. Kanao, Y. Yamamoto, T. Arie, S. Akita, K. Takei, Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin, ACS nano 8(12) (2014) 12851-12857. [85]G. Liu, Q. Tan, H. Kou, L. Zhang, J. Wang, W. Lv, H. Dong, J. Xiong, A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things, Sensors 18(5) (2018) 1400.
|