跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃健維
研究生(外文):HUANG, JIAN-WEI
論文名稱:電鍍銅/雷射誘發石墨烯複合材料於高靈敏度撓性應變感測器之研製
論文名稱(外文):Highly sensitive and flexible strain sensors based on electroplating copper/ laser-induced graphene composites
指導教授:曾釋鋒
指導教授(外文):TSENG, SHIH-FENG
口試委員:曾釋鋒李昌駿蕭文澤
口試委員(外文):TSENG, SHIH-FENGLEE, CHANG-CHUNHSIAO, WEN-TSE
口試日期:2024-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:105
中文關鍵詞:紫外光雷射聚醯亞胺薄膜銅/石墨烯應變感測器
外文關鍵詞:Ultraviolet laserpolyimide filmcopper/graphenestrain sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨開發可調整靈敏度撓性高響應之電阻應變感測器,使用高脈衝紫外光雷射加工系統,於可撓性聚烯亞胺薄膜上誘發微/奈米級多孔石墨烯製作應變感測器網柵電極結構,再使用電鍍技術將銅離子還原沉積於撓性微/奈米級多孔石墨烯網柵電極結構上製備銅/石墨烯應變感測器。電極層透過雷射直寫技術(DLW)精確地描繪出電極線寬0.1 mm、0.2 mm、0.3 mm、0.4 mm及0.5 mm之網柵電極結構應用於應變感測器。最終與純石墨烯應變感測器於微拉伸應變、人體關節應變及晶圓搬運手臂微應變進行比較。本研究利用掃描式電子顯微鏡、化學分析電子能譜儀、光繞射分析儀和形狀分析雷射共軛焦兼白光干涉顯微鏡。分別量測純石墨烯及銅/石墨烯複合材料之微觀表面形貌、材料斷面輪廓形狀、材料晶格結構與材料晶向及材料表面成分分析。高精密電訊號量測設備用於量測應變感測器於應變下之電阻變化。本研究開發之銅/石墨烯應變感測器,透過變更四種不同電鍍時間1分鐘、2分鐘、3分鐘和4 分鐘來控制銅離子附著於石墨烯電極結構上之膜厚,最後在將感測器貼附於人體關節上進行動態應變量測和晶圓搬運手臂上進行微震動應變量測,以及於單柱型萬能試驗機進行拉伸實驗。實驗後結果顯示,雷射誘發石墨烯電極線寬為0.1 mm並電鍍1 min之銅/石墨烯應變感測器得到最佳性能表現,當感測器分別於0 - 3%、3 - 5%和5 - 8%應變範圍內,其應變因子分別為7.67、44.29和414.69,且應變範圍可達8%。綜上所述,本研究製備之銅/石墨烯應變感測器具備高靈敏度、良好線性響應和響應穩定性,應用於微小應變檢測,亦能即時且準確地量測晶圓搬運手臂之微震動。未來可應用於各種應變量測場合,如人體運動追蹤和機械健康度監測等,甚至改變電極結構即可應用於其他領域,如生物醫學和超級電容等。
This research aims to develop flexible and high-response resistive strain sensors with adjustable sensitivity. A high-pulse ultraviolet laser processing system was used to induce micro/nano-scale porous graphene on a flexible polyethyleneimine (PI) film to produce strain sensors. The grid electrode structure was then used to deposit copper ions on the flexible micro/nano-scale porous graphene to prepare copper/graphene strain sensors. The direct laser writing technology (DLW) was used to accurately depict grid electrode structures with electrode line widths of 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm for use in strain sensors. Finally, copper/graphene strain sensors were compared with the pure graphene strain sensor in terms of micro-tensile strain, human joint strain, and micro-strain of the wafer handling arm. This study utilized a scanning electron microscope, an X-ray photoelectron spectroscopy, an X-ray diffraction analyzer, and laser confocal microscopy with white light interference to measure the surface morphology, cross-sectional profile, lattice structure, crystal orientation, and elemental content of of pure graphene and copper/graphene composites. High-precision electrical signal measurement equipment was used to measure the resistance change of strain sensors under strain. The film thickness of copper ions attached to the graphene electrode structure was controlled by changing four different plating times of 1 min, 2 min, 3 min, and 4 min for the copper/graphene strain sensor. Finally, the developed sensors were attached to the human joints for dynamic strain measurement, the wafer handling arm for micro-vibration strain measurement, and the single-column universal testing machine for tensile testing. The results after the experiment showed that the copper/graphene strain sensor with a laser-induced graphene electrode line width of 0.1 mm and electroplating time of 1 min achieved the best performance. When the sensor was at 0 - 3% and 3 - 5%, and 5 - 8% strain range, its strain factors are 7.67, 44.29, and 414.69, respectively, and the strain range can reach 8%. In summary, the copper/graphene strain sensor prepared in this study has high sensitivity, good linear response, and high response stability. It can be used to detect small strains and can also used to measure the vibration of the wafer handling arm instantly and accurately. In the future, it can be used in various strain measurement situations, such as human movement tracking and mechanical health monitoring. It can even be used in other fields, such as biomedicine and supercapacitors, by changing the electrode structure.
摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 製程材料特性概述 3
1.2.1 聚醯亞胺薄膜 3
1.2.2 銅/石墨烯複合材料 4
1.3 紫外光脈衝雷射加工製程技術 6
1.4 研究動機與目的 7
1.5 論文架構 8
第二章 文獻回顧與探討 9
2.1 雷射加工技術於聚醯亞胺基板上誘發石墨烯之應用 9
2.2 複合材料銅/石墨烯感測器之應用探討 18
2.3 應變感測器之應用探討 26
2.4 應變感測器之性能探討 37
第三章 實驗設計與規劃 51
3.1 實驗流程 51
3.2 高脈衝紫外光雷射加工系統 53
3.2.1 高脈衝紫外光雷射之規格 53
3.2.2 雷射加工之掃描路徑與參數計算方式 54
3.2.3 雷射輻照於聚醯亞胺基板上誘發石墨烯之反應機制 56
3.3 應變感測器 57
3.3.1 應變感測器之電極結構設計 57
3.3.2 銅/石墨烯應變感測器製備 59
3.4 應變實驗設計 61
3.4.1 微拉伸應變與環境測試實驗架構 61
3.4.2 人體關節應變實驗架構 63
3.4.3 晶圓搬運手臂微應變實驗架構 64
3.4.4 實驗量測儀器與設備 65
第四章 實驗結果與討論 71
4.1 銅/石墨烯之材料特性分析 71
4.1.1 表面形貌及元素分析 71
4.1.2 XRD 75
4.1.3 XPS 77
4.2 應變實驗 83
4.2.1 微拉伸應變 83
4.2.2 人體關節應變偵測 88
4.2.3 晶圓搬運手臂微震動偵測 89
4.2.4 環境測試實驗 91
第五章 結論與未來展望 95
5.1 結論 95
5.2 未來展望 97
參考文獻 98

[1]G. Wu, L. Xiang, W. Wang, C. Yao, Z. Yan, C. Zhang, J. Wu, Y. Liu, B. Zheng, H. Liu, C. Hu, X. Sun, C. Zhu, Y. Wang, X. Xiong, Y. Wu, L. Gao, D. Li, A. Pan, S. Li, Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system, Science Bulletin 69(4) (2024) 473-482.
[2]J. Yin, X. Liu, B. Guan, Z. Ma, T. Zhang, Performance analysis and energy saving potential of air conditioning system in semiconductor cleanrooms, Journal of Building Engineering 37 (2021) 102158.
[3]N. Watanabe, T. Mizutani, H. Nagano, High-performance energy-saving miniature loop heat pipe for cooling compact power semiconductors, Energy Conversion and Management 236 (2021) 114081.
[4]C.-F. Chien, J.-T. Peng, H.-C. Yu, Building energy saving performance indices for cleaner semiconductor manufacturing and an empirical study, Computers & Industrial Engineering 99 (2016) 448-457.
[5]J. Lepawsky, Climate change induced water stress and future semiconductor supply chain risk, iScience 27(2) (2024) 108791.
[6]M. Mahachi, H. Moukala, A. Ismail, A. Hopf, H. Ehm, Simulating the COVID19-pandemic and its impact on the semiconductor supply chain: Enabling a supply chain risk management framework, IFAC-PapersOnLine 55(10) (2022) 2215-2220.
[7]Q. Wang, N. Huang, H. Cai, X. Chen, Y. Wu, Water strategies and practices for sustainable development in the semiconductor industry, Water Cycle 4 (2023) 12-16.
[8]C.-F. Chien, C.-Y. Hsu, J.R. Morrison, R. Dou, Semiconductor manufacturing intelligence and automation, Computers & Industrial Engineering 99 (2016) 315-317.
[9]2023年半導體產業發展趨勢 (2023); Available from: https://outlook.stpi.narl.org.tw/index/focusnews/4b1141008803288e018803995d0e0122
[10]S. Sidaoui, A. Ghoudi, A. Oueslati, M. Raduca, M. Badea, M. Andruh, S. Nasr, H. Naïli, W. Rekik, Crystal structure, thermal behavior and electric properties of a new semiconductor cobalt-based hybrid material, Journal of Molecular Structure 1294 (2023) 136394.
[11]X. Hei, J. Li, All-in-one: a new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures, Chemical Science 12(11) (2021) 3805-3817.
[12]Z. Wang, C. Wang, M. Tomizuka, Vibration cancellation of semiconductor manufacturing robots, Manufacturing Letters 4 (2015) 6-9.
[13]W. Aribowo, T. Yamashita, K. Terashima, Y. Masui, T. Saeki, T. Kamigaki, H. Kawamura, Vibration Control of Semiconductor Wafer Transfer Robot by Building an Integrated Tool of Parameter Identification and Input Shaping, IFAC Proceedings Volumes 44(1) (2011) 14367-14373.
[14]G. Zhu, X. Zeng, Z. Gao, Z. Gong, W. Duangmu, Y. Zeng, C. Lu, Study on vibration stability of aircraft engine blades polished by robot controlled pneumatic grinding wheel, Journal of Manufacturing Processes 99 (2023) 636-651.
[15]A. Buerkle, W. Eaton, N. Lohse, T. Bamber, P. Ferreira, EEG based arm movement intention recognition towards enhanced safety in symbiotic Human-Robot Collaboration, Robotics and Computer-Integrated Manufacturing 70 (2021) 102137.
[16]M. Fernández Campo, F.J. Hernandez González, I. Bachiller Martínez, Safety considerations of on-ground operations for demonstration of multi arm robot of in-orbit telescope installation (MIRROR), Journal of Space Safety Engineering 10(1) (2023) 70-75.
[17]A. Grabowski, R. Kosiński, M. Dźwiarek, Vision based safety system for human and robot arm detection* *The research was supported by the Ministry of Science and Higher Education, National Program “Improvement of Safety and Working Conditions” project No. 4.R.03, CIOP-PIB (2008-2010), IFAC Proceedings Volumes 42(16) (2009) 68-72.
[18]J. Seo, H. Shin, S. Cho, S. Lee, W. Ryu, S.-C. Han, D.H. Kim, G.H. Kang, A phased array ultrasound system with a robotic arm for neuromodulation, Medical Engineering & Physics 118 (2023) 104023.
[19]H. Jiao, K. Yang, S. Sang, Z. Pei, R. Guo, H. Shi, W. Wang, Graphene-based flexible temperature/pressure dual-mode sensor as a finger sleeve for robotic arms, Diamond and Related Materials 142 (2024) 110799.
[20]V. Feliu, F. Ramos, Strain gauge based control of single-link flexible very lightweight robots robust to payload changes, Mechatronics 15(5) (2005) 547-571.
[21]Flexible Electronics Market By Components (Display, Battery, Sensors, Memory), By Application (Consumer Electronics, Automotive, Healthcare, Industrial) And Segment Forecast To 2024 (2016); Available from: https://www.grandviewresearch.com/industry-analysis/flexible-electronics-market.
[22]M. Mehrabi, V. Vatanpour, Polyimide-based separation membranes for liquid separation: A review on fabrication techniques, applications, and future perspectives, Materials Today Chemistry 35 (2024) 101895.
[23]E. Toto, M.G. Santonicola, S. Laurenzi, C. Circi, R.C. Pellegrini, E. Cavallini, E. Serra, S. Scaglione, D. Zola, UV–VIS-NIR optical properties of micrometric-thick polyimide membranes for lightweight devices in space, Optical Materials 146 (2023) 114604.
[24]J.H. Kim, H.S. Jung, Y.S. Chi, T.J. Kang, Applying porous polyimide films in fibrous dye-sensitized solar cells, Solar Energy 86(9) (2012) 2606-2612.
[25]R.L. Streng, S. Vagin, Y. Guo, B. Rieger, A.S. Bandarenka, Identifying the charge storage mechanism in polyimide anodes for Na-ion aqueous batteries by impedance spectroscopy††Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ya00037d, Energy Advances 3(4) (2024) 874-882.
[26]C. Yi, W. Li, S. Shi, K. He, P. Ma, M. Chen, C. Yang, High-temperature-resistant and colorless polyimide: Preparations, properties, and applications, Solar Energy 195 (2020) 340-354.
[27]G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review, Science and Technology of Advanced Materials 19(1) (2018) 613-648.
[28]S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays, Carbon 96 (2016) 522-531.
[29]L. Wang, K. Yin, Q. Deng, Q. Huang, C.J. Arnusch, Multiscale hybrid-structured femtosecond laser-induced graphene with outstanding photo-electro-thermal effects for all-day anti-icing/deicing, Carbon 219 (2024) 118824.
[30]L. Mao, T. Pan, L. Lin, Y. Ke, H. Su, Y. Li, W. Huang, T. Li, Y. Lin, Simultaneously enhancing sensitivity and operation range of flexible pressure sensor by constructing a magnetic-guided microstructure in laser-induced graphene composite, Chemical Engineering Journal 481 (2024) 148639.
[31]R. Nakashima, H. Takahashi, Triaxial tactile sensor utilizing standing laser-induced graphene cantilevers on polyimide film, Sensors and Actuators A: Physical 365 (2024) 114919.
[32]M.R. Bobinger, F.J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli, D.P. Morales, N. Rodríguez, A. Rivadeneyra, Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates, Carbon 144 (2019) 116-126.
[33]X. Yu, J. Zhang, N. Li, Y. Song, J. Kang, S. Zhang, C. Liu, Z. Li, J. Pu, N. Hong, M. Xi, Z. Wang, Laser-induced manganese oxide/graphene composite electrodes with commercial-level mass loading towards high-performance supercapacitors, Journal of Alloys and Compounds 969 (2023) 172435.
[34]M. Luo, Z. Zhu, L. Huang, Y. Gao, Optimization growth of graphene on annealed copper and its application as glucose sensor material, Materials Science in Semiconductor Processing 173 (2024) 108147.
[35]Y. Guan, Q. Zhang, W. Yang, Z. Li, H. Wang, J. Gao, Q. Jiao, H. Du, L. Yang, L. Zhang, L. Yang, H. Chen, L. Zhang, A Highly-Sensitive Wearable Capacitance Pressure Sensor based on Calcium Copper Titanate/ Polydimethysiloxane/Graphene Oxide and Polydimethysiloxane/Silver Nanowires Sanwich Strustures Combination for Human Body Monitoring, Materials Chemistry and Physics (2024) 129345.
[36]M. Poursoltani Zarandi, H. Beitollahi, Design of electrochemical sensor based on N-doped reduced graphene oxide/copper oxide nanocomposite and ionic liquid for the simultaneous determination of 4-aminophenol and acetaminophen, Microchemical Journal 181 (2022) 107726.
[37]Y. Xiong, Y. Zhu, X. Liu, P. Zhu, Y. Hu, R. Sun, C.-P. Wong, A flexible pressure sensor based on melamine foam capped by copper nanowires and reduced graphene oxide, Materials Today Communications 24 (2020) 100970.
[38]B. Sakthivel, G. Nammalvar, Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite, Journal of Alloys and Compounds 788 (2019) 422-428.
[39]Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang, Y. Wang, S. Lu, R. Xu, J. Zhao, A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene, Carbon 156 (2020) 506-513.
[40]Y. Yang, H. Wang, Y. Hou, S. Nan, Y. Di, Y. Dai, F. Li, J. Zhang, MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics, Composites Science and Technology 226 (2022) 109518.
[41]X. Zhao, H. Guo, P. Ding, W. Zhai, C. Liu, C. Shen, K. Dai, Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring, Nano Energy 108 (2023) 108197.
[42]S. Zhao, L. Liu, Y. Liu, Y. Zhou, M. Xia, Y. Zhang, Y. Li, D. Cao, Y. Gao, Y. Lai, Biomimetic design of gradient and hierarchical platform based on carbon nanotubes and porous carbon polyhedrons for strain sensors and beyond, Composites Science and Technology 237 (2023) 109998.
[43]J. Lin, Y. Ai, W. Li, Y. Peng, Y. Liu, A. He, H. Nie, Flexible multi-modal sensors based on CNT hollow spheres/PDMS composites for human motion recognition and colloid concentration detection, Composites Science and Technology 237 (2023) 110005.
[44]X. Guo, W. Hong, Y. Zhao, T. Zhu, H. Li, G. Zheng, J. Wang, G. Tang, J. Cao, Y. Wang, J. Yang, H. Zhang, D. Zhou, R. Feng, D. Xu, Q. Hong, Y. Xu, Bioinspired sandwich-structured pressure sensors based on graphene oxide/hydroxyl functionalized carbon nanotubes/bovine serum albumin nanocomposites for wearable textile electronics, Composites Part A: Applied Science and Manufacturing 163 (2022) 107240.
[45]H. Yang, Q. Huang, S. Wang, Q. Zong, C. Tan, H. Ye, G. Zhang, Three-dimensional surface strain sensor based on PDMS/LIG composite film with adjustable electromechanical performance, Applied Surface Science 660 (2024) 159885.
[46]Z. Chu, W. Jiao, Y. Huang, Y. Zheng, R. Wang, X. He, Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring, Journal of Materials Chemistry A 9(15) (2021) 9634-9643.
[47]T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, G. Ding, Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors, Advanced Functional Materials 29(45) (2019) 1903732.
[48]Z. Chen, Z. Yang, T. Yu, Z. Wei, C. Ji, B. Zhao, T. Yu, W. Yang, Y. Li, Sandwich-structured flexible PDMS@graphene multimodal sensors capable of strain and temperature monitoring with superlative temperature range and sensitivity, Composites Science and Technology 232 (2023) 109881.
[49]L. Yang, W. Mao, J. Zhang, Q. Zhao, Y. Bie, Y. Hou, H. He, H. Huang, Y. Xu, Recycling of Flyash: Route toward high-performance, eco-friendly, and cost-effective flexible strain sensor via synergizing multi-walled carbon nanotubes, Surfaces and Interfaces 45 (2024) 103867.
[50]Y. Jia, X. Yue, Y. Wang, C. Yan, G. Zheng, K. Dai, C. Liu, C. Shen, Multifunctional stretchable strain sensor based on polydopamine/ reduced graphene oxide/ electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring, Composites Part B: Engineering 183 (2020) 107696.
[51]J. Gao, B. Li, X. Huang, L. Wang, L. Lin, H. Wang, H. Xue, Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring, Chemical Engineering Journal 373 (2019) 298-306.
[52]A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications, Applied Physics Letters 113(8) (2018).
[53]Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, B. Li, Highly Stretchable Core–Sheath Fibers via Wet-Spinning for Wearable Strain Sensors, ACS Applied Materials & Interfaces 10(7) (2018) 6624-6635.
[54]X. Li, T. Hua, B. Xu, Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core, Carbon 118 (2017) 686-698.
[55]S.-F. Tseng, Y.-H. Yang, Superhydrophobic graphene/ceramic templates for the preparation of particulate drugs, Ceramics International 48(2) (2022) 2021-2030.
[56]S.-F. Tseng, P.-Y. Cheng, W.-T. Hsiao, M.-F. Chen, C.-K. Chung, P.-H. Wang, High-performance graphene-based heaters fabricated using maskless ultraviolet laser patterning, The International Journal of Advanced Manufacturing Technology 102(9) (2019) 3011-3020.
[57]S. Bai, Y. Tang, L. Lin, L. Ruan, R. Song, H. Chen, Y. Du, H. Lin, Y. Shan, Y. Tang, Investigation of micro/nano formation mechanism of porous graphene induced by CO2 laser processing on polyimide film, Journal of Manufacturing Processes 84 (2022) 555-564.
[58]L. Huang, H. Wang, P. Wu, W. Huang, W. Gao, F. Fang, N. Cai, R. Chen, Z. Zhu, Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber, Sensors 20(15) (2020) 4266.
[59]I. Boukhoubza, M. Khenfouch, M. Achehboune, B. Mothudi, I. Zorkani, A. Jorio, X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide, Journal 1292(1) (Year) 012011.
[60]T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon 50(8) (2012) 2994-3000.
[61]Y. Li, X.R. Chang, X.J. Sang, J.S. Li, Y.H. Luo, Z.M. Zhu, W.S. You, Keggin‐Type Polyoxometalate Modified Ag/Graphene Composite Materials for Electrocatalytic Water Oxidation, European Journal of Inorganic Chemistry 2019(31) (2019) 3597-3604.
[62]A. Kaushal, S. Dhawan, V. Singh, Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO), Journal 2115(1) (Year).
[63]M. Cobos, I. De-La-Pinta, G. Quindós, M.J. Fernández, M.D. Fernández, Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties, Nanomaterials 10(2) (2020) 376.
[64]S.B. Malik, A. Gul, J.I. Saggu, B.A. Abbasi, B. Azad, J. Iqbal, M. Kazi, W. Chalgham, S.A.M. Firoozabadi, Fabrication and Characterization of Ag-Graphene Nanocomposites and Investigation of Their Cytotoxic, Antifungal and Photocatalytic Potential, Molecules 28(10) (2023) 4139.
[65]R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods, Ceramics International 45(11) (2019) 14439-14448.
[66]A.M. Ektessabi, S. Hakamata, XPS study of ion beam modified polyimide films, Thin Solid Films 377-378 (2000) 621-625.
[67]W.-J. Lee, Y.-S. Lee, S.-K. Rha, Y.-J. Lee, K.-Y. Lim, Y.-D. Chung, C.-N. Whang, Adhesion and interface chemical reactions of Cu/polyimide and Cu/TiN by XPS, Applied Surface Science 205(1) (2003) 128-136.
[68]J. Zhang, M. Ren, L. Wang, Y. Li, B.I. Yakobson, J.M. Tour, Oxidized laser‐induced graphene for efficient oxygen electrocatalysis, Advanced Materials 30(21) (2018) 1707319.
[69]Y. Zhang, C. Zhang, W. Chen, Z. Liu, One-step laser-induced Cu-embedded graphene for non-enzymatic glucose sensing in beverages, Journal of Alloys and Compounds 992 (2024) 174563.
[70]L. Wang, Y. Tian, H. Ding, J. Li, Microstructure and properties of organosoluble polyimide/silica hybrid films, European Polymer Journal 42(11) (2006) 2921-2930.
[71]Y. Lei, L. Zhang, L. Zhou, J. Yu, G. Zhao, L. Guo, D. Zhang, H. Qi, Proton irradiation-induced changes in the tribological performance of polyimide composites, Tribology International 167 (2022) 107427.
[72]S. Naghdi, K. Nešović, G. Sánchez-Arriaga, H.Y. Song, S.W. Kim, K.Y. Rhee, V. Mišković-Stanković, The effect of cesium dopant on APCVD graphene coating on copper, Journal of Materials Research and Technology 9(5) (2020) 9798-9812.
[73]Y. Yang, Y. Ping, Y. Gong, Z. Wang, Q. Fu, C. Pan, Ag/graphene composite based on high-quality graphene with high electrical and mechanical properties, Progress in Natural Science: Materials International 29(4) (2019) 384-389.
[74]B. Jiang, C. Tian, G. Song, W. Chang, G. Wang, Q. Wu, H. Fu, A novel Ag/graphene composite: facile fabrication and enhanced antibacterial properties, Journal of Materials Science 48(5) (2013) 1980-1985.
[75]M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Applied Surface Science 257(3) (2010) 887-898.
[76]H. Wang, Z. Zhao, P. Liu, X. Guo, Laser-induced porous graphene on Polyimide/PDMS composites and its kirigami-inspired strain sensor, Theoretical and Applied Mechanics Letters 11(2) (2021) 100240.
[77]S.-F. Tseng, C.-C. Huang, Investigation of interactions between high pulsed ultraviolet lasers and composite graphene/AgNWs films, Applied Surface Science 570 (2021) 151060.
[78]S.-F. Tseng, C.-H. Liao, W.-T. Hsiao, T.-L. Chang, Ultrafast laser direct writing of screen-printed graphene-based strain electrodes for sensing glass deformation, Ceramics International 47(20) (2021) 29099-29108.
[79]P. Song, G. Wang, Y. Zhang, Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors, Sensors and Actuators A: Physical 323 (2021) 112659.
[80]Z. Wang, P. Li, R. Song, W. Qian, H. Zhou, Q. Wang, Y. Wang, X. Zeng, L. Ren, S. Yan, High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors, Science Bulletin 65(16) (2020) 1363-1370.
[81]H. Kun, L. Bin, M. Orban, Q. Donghai, Y. Hongbo, Accurate Flexible Temperature Sensor Based on Laser-Induced Graphene Material, Shock and Vibration 2021(1) (2021) 9938010.
[82]M. Marengo, G. Marinaro, J. Kosel, Flexible temperature and flow sensor from laser-induced graphene, Journal (Year) 1-3.
[83]Q. Liu, H. Tai, Z. Yuan, Y. Zhou, Y. Su, Y. Jiang, A high‐performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real‐time monitoring, Advanced Materials Technologies 4(3) (2019) 1800594.
[84]S. Harada, K. Kanao, Y. Yamamoto, T. Arie, S. Akita, K. Takei, Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin, ACS nano 8(12) (2014) 12851-12857.
[85]G. Liu, Q. Tan, H. Kou, L. Zhang, J. Wang, W. Lv, H. Dong, J. Xiong, A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things, Sensors 18(5) (2018) 1400.

電子全文 電子全文(網際網路公開日期:20260902)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top