跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃品嘉
研究生(外文):HUANG, PIN-JIA
論文名稱:超臨界二氧化碳混合深共熔溶劑電鍍鎳鎢合金之性質研究
論文名稱(外文):Study on the Properties of Ni-W Alloy Electroplated in Deep Eutectic Solvent Mixed with Supercritical Carbon Dioxide
指導教授:李春穎李春穎引用關係
指導教授(外文):LEE, CHUN-YING
口試委員:彭坤增林懷恩李春穎
口試委員(外文):PENG, KUN-CHENGLIN, HWAI-ENLEE, CHUN-YING
口試日期:2024-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:83
中文關鍵詞:深共熔溶劑超臨界二氧化碳鎳鎢合金電鍍
外文關鍵詞:Deep-eutectic SolventSupercritical CO2 ProcessNi-W alloyElectroplating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
響應近年發展綠色科技趨勢,為降低傳統電鍍以及離子溶液對於環境危害並朝向永續環保發展,許多研究替代具有高表面硬度、耐磨耗、成本低廉卻對人體健康、環境污染有重大影響的金屬鉻鍍層。文獻指出鎳基材料在硬度、耐磨耗、抗腐蝕等方面因性能優秀而受到關注,其中鎳鎢合金(Ni-W alloy)在鎳基金屬具有的優點上表現更加突出,被視為能夠替代鉻鍍層的潛在備選材料之一。有鑒於此,本研究選用對環境友善的深共熔溶液(Deep-Eutectic Solvent, DES)作為電鍍主要溶劑,並以硫酸鎳、鎢酸鈉、檸檬酸、硼酸混合製備綠色電鍍液。探討在一般電鍍與超臨界二氧化碳電鍍製備之鎳鎢合金鍍層之材料性質,分析鎳鎢鍍層在表面形貌、機械性質及耐腐蝕性等方面之表現,期望發展出以環境友善為主軸且業界可應用之嶄新電鍍製程。鍍層檢測包括以掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀察鎳鎢合金鍍層之表面形貌,確認表面有無明顯龜裂;以動電位極化曲線檢測不同電流密度及電鍍方式下製備鍍層的抗腐蝕性質。以能量散射光譜儀(EDS)檢測鍍層成分,發現超臨界二氧化碳電鍍製備之鍍層,鎢原子百分比最高為0.44%,高於一般電鍍所得最高之0.21%,分析元素分佈觀察到鎢原子於鍍層內呈少量均勻分布;在硬度檢測中,發現超臨界二氧化碳電鍍之鎳鎢鍍層硬度最大為630 HV,一般電鍍最大為545 HV,二者相較純鎳鍍層334 HV分別有94.6%與63.2%的提升;在耐腐蝕性檢測中,一般電鍍之鎳鎢鍍層具有最低腐蝕電流密度,相較於超臨界二氧化碳鍍層低約69 %,於純鎳鍍層約41%;兩種電鍍製程及不同電流參數下,鎳鎢鍍層表面皆呈現鋼灰色,結晶方位以(211)或(220)為主。
Responding to the recent trends in green technology, this study investigates environmentally sustainable alternatives to conventional chromium plating, which is known for its adverse effects on human health and environmental pollution. Nickel-based materials, particularly Nickel-Tungsten (Ni-W) alloys, are recognized for their superior properties in terms of hardness, wear resistance, and corrosion resistance, making them promising substitutes for chromium coatings. In this research, a green electroplating solution is prepared using an environmentally friendly Deep-Eutectic Solvent (DES) as the primary electrolyte, mixed with nickel sulfate, sodium tungstate, citric acid, and boric acid. The material properties of Ni-W alloy coatings are explored under conventional and supercritical carbon dioxide (SC-CO2) electroplating conditions. The study aims to develop a new electroplating process centered on environmental friendliness and applicable to industry standards. Coating evaluation included surface morphology assessments via Scanning Electron Microscopy (SEM), which confirmed the absence of significant cracks; corrosion resistance was measured through dynamic potential polarization curves across different current densities and plating methods. Energy-dispersive X-ray spectroscopy (EDS) was utilized to analyze the composition of the coatings, revealing a maximum tungsten content of 0.44% in SC-CO2 coating, which is significantly higher than the 0.21% achieved with Conventional coating. The elemental distribution analysis showed a uniform distribution of tungsten atoms within the coating. In hardness tests, the maximum hardness of the Ni-W coatings prepared by supercritical carbon dioxide electroplating is found to be 630 HV, compared to 545 HV for conventional electroplating, representing a 94.6% and 63.2% increase over pure nickel coatings at 334 HV, respectively. In corrosion resistance testing, the Ni-W coating produced by conventional electroplating exhibited the lowest corrosion current density, approximately 69% lower than the SC-CO2 coating, and about 41% lower than pure nickel coatings. Both electroplating processes resulted in steel-gray coatings with a crystalline orientation of (211) or (220).
摘要 i
ABSTRACT iii
誌謝 v
表目錄 ix
圖目錄 x
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 4
第二章 文獻回顧 5
2.1 電化學沉積 5
2.1.1 電化學結晶成核與成長過程 7
2.1.2 影響電鍍鍍層之因素 8
2.2 鎳鎢合金 10
2.2.1 誘導共沉積 10
2.2.2 合金電鍍之電解定律與電流效率 12
2.2.3 鎳鎢合金薄膜文獻 13
2.3 深共熔溶液 16
2.3.1 離子溶液與深共熔溶液 16
2.3.2 深共熔溶劑於電鍍之文獻回顧 18
2.4 超臨界流體 21
2.4.1 超臨界二氧化碳 22
2.4.2 超臨界二氧化碳於電鍍之文獻回顧 23
第三章 實驗方法 27
3.1 實驗架構 27
3.1.1 實驗使用藥品 28
3.1.2 鎳鎢電鍍液調配 29
3.1.3 陰極、陽極材料前處理 31
3.1.4 實驗製程參數 34
3.2 一般電鍍製程之實驗設備 35
3.3 超臨界二氧化碳電鍍實驗設備 36
3.4 鍍層微結構分析 39
3.4.1 掃描式電子顯微鏡 39
3.4.2 X-光繞射分析儀 43
3.5 鍍層機械性質分析 46
3.5.1 維小維克氏硬度試驗分析 46
3.5.2 表面粗糙度 47
3.5.3 刮痕試驗儀 49
3.6 鍍層電化學檢測 50
第四章 結果與討論 52
4.1 鍍層微結構與表面形貌分析 52
4.1.1 鍍層表面形貌 52
4.1.2 鍍層表面形貌顯微觀察 54
4.1.3 鍍層橫截面形貌與厚度觀察 57
4.1.4 鍍層成分定量與橫截面元素分佈分析 60
4.1.5 鍍層電流效率 63
4.2 鍍層之維氏硬度分析 65
4.3 鍍層之刮痕試驗分析 67
4.4 鍍層之電化學分析 69
4.5 X光繞射圖譜與晶粒尺寸分析 71
第五章 結論與未來展望 74
5.1 結論 74
5.1.1 鍍層表面形貌與微結構 74
5.1.2 鍍層機械性質分析 75
5.1.3 鍍層電化學性質 75
5.2 未來展望 76
參考文獻 77


[1]Tang, J., et al. Effect of additives on mechanical properties of electroplating nickel. in 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems. 2010. p.450-453.
[2]Zheng, L., et al. Investigation of benzoquinone as a new type of Cu electroplating additive. in 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2017. p.231-233.
[3]Smoke, T. and I. Smoking, IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, 2004. 1: p. 1-1452.
[4]Saha, R., R. Nandi, and B. Saha, Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry. 64(10): p. 1782-1806.
[5]周淑金,王政全, 綠色表面處理-六價鉻替代技術的發展. 工業材料, 2006. p.25-32.
[6]Zhao, J., M.R. Wilkins, and D. Wang, A review on strategies to reduce ionic liquid pretreatment costs for biofuel production. Bioresource Technology, 2022. 364: p. 128045.
[7]Chung, S.-T. and W.-T. Tsai, Nanocrystalline Ni–C electrodeposits prepared in electrolytes containing supercritical carbon dioxide. Journal of the Electrochemical Society, 2009. 156(11): p. D457.
[8]Budevski, E., G. Staikov, and W.J. Lorenz, Electrocrystallization: Nucleation and growth phenomena. Electrochimica Acta, 2000. 45(15): p. 2559-2574.
[9]黃瑞雄,顏溪成, 漫談電化學. 科學發展專題報導, 2002年(359期): p. 22-27.
[10]Markovic, R., et al., Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes. International Journal of Electrochemical Science, 2013. 8(5): p. 7357-7370.
[11]Falola, B.D. and I.I. Suni, Low temperature electrochemical deposition of highly active elements. Current Opinion in Solid State and Materials Science, 2015. 19(2): p. 77-84.
[12]Güler, E.S., E. Konca, and İ. Karakaya, Effect of Electrodeposition Parameters on the Current Density of Hydrogen Evolution Reaction in Ni and Ni-MoS2 Composite Coatings. International Journal of Electrochemical Science, 2013. 8(4): p. 5496-5505.
[13]Banbur-Pawlowska, S., et al., Analysis of electrodeposition parameters influence on cobalt deposit roughness. Applied Surface Science, 2016. 388: p. 805-808.
[14]Xuetao, Y., et al., Influence of pulse parameters on the microstructure and microhardness of nickel electrodeposits. Surface and Coatings Technology, 2008. 202(9): p. 1895-1903.
[15]Sudagar, J., J. Lian, and W. Sha, Electroless nickel, alloy, composite and nano coatings – A critical review. Journal of Alloys and Compounds, 2013. 571: p. 183-204.
[16]Mahmood, A., Z. Zheng, and Y. Chen, Zinc-Bromine Batteries: Challenges, Prospective Solutions, and Future. Adv Sci (Weinh), 2024. 11(3): p. e2305561.
[17]Walsh, F.C. and M.E. Herron, Electrocrystallization and electrochemical control of crystal growth: fundamental considerations and electrodeposition of metals. Journal of Physics D: Applied Physics, 1991. 24(2): p. 217.
[18]Wang, K., et al., A Phase-Field Model of Dendrite Growth of Electrodeposited Zinc. Journal of The Electrochemical Society, 2019. 166(10): p. D389.
[19]Price, P.B., D.A. Vermilyea, and M.B. Webb, On the growth and properties of electrolytic whiskers. Acta Metallurgica, 1958. 6(8): p. 524-531.
[20]王維銘, 扣件表面鍍層微觀組織結構之影響. Fastener World, 2022. 195. p.105-107.
[21]Younes, O. and E. Gileadi, Electroplating of Ni /W Alloys : I. Ammoniacal Citrate Baths. Journal of The Electrochemical Society, 2002. 149(2): p. C100.
[22]Zeng, T.-W. and S.-C. Yen, Effects of Additives in an Electrodeposition Bath on the Surface Morphologic Evolution of Electrodeposited Copper. International Journal of Electrochemical Science, 2021. 16(2): p. 210245.
[23]Allahyarzadeh, M.H., et al., Ni-W electrodeposited coatings: Characterization, properties and applications. Surface and Coatings Technology, 2016. 307: p. 978-1010.
[24]Wasekar, N.P. and G. Sundararajan, Sliding wear behavior of electrodeposited Ni–W alloy and hard chrome coatings. Wear, 2015. 342-343: p. 340-348.
[25]蔡春泉, 直流電沉積Ni-Mo合金之製程發展及磨潤研究. 陸軍後勤季刊, 2017(106年第4): p. 66-90.
[26]田福助, 電化學-理論與應用. 2017: 高立圖書有限公司.
[27]沈峙璁, 應用超臨界二氧化碳於電鍍鎳磷合金之研究, in 化學工程所. 2010, 國立中正大學: 嘉義縣. p. 126.
[28]侯光煦, 脈衝電流電鑄Ni-P鍍層之磨潤特性研究, in 機械工程研究所. 2006, 國立中央大學: 桃園縣. p. 168.
[29]Mizushima, I., et al., Development of a new electroplating process for Ni–W alloy deposits. Electrochimica Acta, 2005. 51(5): p. 888-896.
[30]Bathini, L., M.J.N.V. Prasad, and N.P. Wasekar, Development of continuous compositional gradient Ni-W coatings utilizing electrodeposition for superior wear resistance under sliding contact. Surface and Coatings Technology, 2022. 445: p. 128728.
[31]Li, K. and D. Xue, Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 2006. 110(39): p. 11332-11337.
[32]Wu, Y., et al., Influence of boric acid on the electrodepositing process and structures of Ni–W alloy coating. Surface and Coatings Technology, 2003. 173(2-3): p. 259-264.
[33]Królikowski, A., et al., Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys. Journal of Solid State Electrochemistry, 2008. 13(2): p. 263-275.
[34]Anastas, P.T. and J.C. Warner, Green Chemistry: Theory and Practice. 2000, Oxford University Press. p. 11-20.
[35]Nelson, W.M., Green Solvents for Chemistry: Perspectives and Practice. 2003, Oxford University Press. p. 91-132.
[36]Tomé, L.I.N., et al., Deep eutectic solvents for the production and application of new materials. Applied Materials Today, 2018. 10: p. 30-50.
[37]Flieger, J. and M. Flieger, Ionic liquids toxicity—benefits and threats. International Journal of Molecular Sciences, 2020. 21(17): p. 6267.
[38]因敏綸, 金屬氧化物在尿素-氯化膽鹼深共熔溶液的溶解機制, in 環境工程研究所在職專班. 2021, 國立中央大學: 桃園縣. p. 100.
[39]Stasiewicz, M., et al., Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicology and Environmental Safety, 2008. 71(1): p. 157-165.
[40]Płotka-Wasylka, J., et al., Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 2020. 159: p. 105539.
[41]Abbott, A.P., et al., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chainsElectronic supplementary information (ESI) available: plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2∶ 1). Chemical communications, 2001(19): p. 2010-2011.
[42]Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb), 2003(1): p. 70-1.
[43]Lukaczynska, M., et al., Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochimica Acta, 2019. 319: p. 690-704.
[44]Cihangir, S., K.S. Ryder, and A. Unal, Detailed investigation of zinc coating behaviours in various deep eutectic solvents. Electrochimica Acta, 2023. 463: p. 142708.
[45]Qadr, G., et al., Nickel electrodeposition from deep eutectic solvents containing copper ions at a high temperature. Journal of Molecular Liquids, 2023. 378: p. 121584.
[46]楊顯整, 超臨界綠色技術之概述. 綠基會通訊, 2009. p. 7-11.
[47]Niessen, H.G. and K. Woelk, Investigations in Supercritical Fluids, in In situ NMR Methods in Catalysis. 2007. p. 69-110.
[48]Yoshida, H., et al., Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution. Chemistry Letters, 2002. 31(11): p. 1086-1087.
[49]Yoshida, H., et al., New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film. Thin Solid Films, 2004. 446(2): p. 194-199.
[50]Kim, M.S., et al., Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2. Chemosphere, 2005. 58(4): p. 459-65.
[51]Pandiyarajan, S., et al., Construction of zinc-cobalt alloy film by supercritical-CO2 electrodeposition pathway: Evaluation of electrochemical robustness. Inorganic Chemistry Communications, 2022. 144: p. 109858.
[52]Chang, T.-F.M., et al., Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath. Electrochimica Acta, 2010. 55(22): p. 6469-6475.
[53]Derbyshire, E. and R. Obeid, Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients, 2020. 12(6): p. 1-31.
[54]Zeisel, S.H. and K.A. da Costa, Choline: an essential nutrient for public health. Nutr Rev, 2009. 67(11): p. 615-23.
[55]Cheney, B. Introduction to Scanning Electron Microscopy. 2009. p. 1-13.
[56]Abdullah, A. and A. Mohammed, Scanning Electron Microscopy (SEM): A Review. 2019. p. 77-85.
[57]Bunaciu, A.A., E.G. Udristioiu, and H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem, 2015. 45(4): p. 289-99.
[58]Callister, W.D. and D.G. Rethwisch, Materials science and engineering : an introduction. 9th edition ed. 2014, Hoboken, NJ: Wiley. p. 51-88.
[59]Nunes, C., A. Mahendrasingam, and R. Suryanarayanan, Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm Res, 2005. 22(11): p. 1942-53.
[60]Standardization,ISO, I.O.f., ISO 6507-1, Metallic materials — Vickers hardness test — Part 1: Test method. 2018. p. 1-6.
[61]Quade, H., U. Prahl, and W. Bleck, Microstructure based hardening model for transformation induced plasticity (TRIP) steels. Chemicke Listy, 2011. 105: p. s705-s708.
[62]Kaluza, M. and R. Olbrycht, Thermographic method for metallic surface roughness evaluation, in Proceedings of the 2022 International Conference on Quantitative InfraRed Thermography. 2022. p. 1-2.
[63]Sekler, J., P.A. Steinmann, and H.E. Hintermann, The scratch test: Different critical load determination techniques. Surface and Coatings Technology, 1988. 36(1): p. 519-529.
[64]Ahmad, Z., CHAPTER 3 - CORROSION KINETICS, in Principles of Corrosion Engineering and Corrosion Control, Z. Ahmad, Editor. 2006, Butterworth-Heinemann: Oxford. p. 57-119.
[65]Jones, D.A., Principles and Prevention of Corrosion. 2nd Edition ed. 1996, Upper Saddle River, New Jersey: Prentice Hall. p. 1-551.
[66]Carpenter, C.R., P.H. Shipway, and Y. Zhu, The influence of CNT co-deposition on electrodeposit grain size and hardness. Surface and Coatings Technology, 2011. 205(21): p. 5059-5063.
[67]Sahari, A., et al., Nucleation, growth, and morphological properties of electrodeposited nickel films from different baths. Surface Review and Letters (SRL), 2008. 15: p. 717-725.
[68]Yasui, M., et al., Effect of metal ion concentration in Ni–W plating solution on surface roughness of Ni–W film. Japanese Journal of Applied Physics, 2015. 55(1S): p. 01AA22.
[69]Zhang, L. and D.D. Macdonald, Segregation of alloying elements in passive systems—I. XPS studies on the Ni–W system. Electrochimica Acta, 1998. 43(18): p. 2661-2671.
[70]Urcezino, A.S., et al., Electrodeposition study of Ni coatings on copper from choline chloride-based deep eutectic solvents. Journal of the Brazilian Chemical Society, 2017. 28(07): p. 1193-1203.
[71]Nagoshi, T., et al., Mechanical properties of nickel fabricated by electroplating with supercritical CO2 emulsion evaluated by micro-compression test using non-tapered micro-sized pillar. Microelectronic Engineering, 2013. 110: p. 270-273.
[72]Sriraman, K.R., S. Ganesh Sundara Raman, and S.K. Seshadri, Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys. Materials Science and Engineering: A, 2007. 460-461: p. 39-45.
[73]Królikowski, A., et al., Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys. Journal of Solid State Electrochemistry, 2009. 13(2): p. 263-275.
[74]Juškėnas, R., et al., XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni–W alloy. Applied Surface Science, 2006. 253(3): p. 1435-1442.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊