|
[1]Tang, J., et al. Effect of additives on mechanical properties of electroplating nickel. in 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems. 2010. p.450-453. [2]Zheng, L., et al. Investigation of benzoquinone as a new type of Cu electroplating additive. in 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2017. p.231-233. [3]Smoke, T. and I. Smoking, IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, 2004. 1: p. 1-1452. [4]Saha, R., R. Nandi, and B. Saha, Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry. 64(10): p. 1782-1806. [5]周淑金,王政全, 綠色表面處理-六價鉻替代技術的發展. 工業材料, 2006. p.25-32. [6]Zhao, J., M.R. Wilkins, and D. Wang, A review on strategies to reduce ionic liquid pretreatment costs for biofuel production. Bioresource Technology, 2022. 364: p. 128045. [7]Chung, S.-T. and W.-T. Tsai, Nanocrystalline Ni–C electrodeposits prepared in electrolytes containing supercritical carbon dioxide. Journal of the Electrochemical Society, 2009. 156(11): p. D457. [8]Budevski, E., G. Staikov, and W.J. Lorenz, Electrocrystallization: Nucleation and growth phenomena. Electrochimica Acta, 2000. 45(15): p. 2559-2574. [9]黃瑞雄,顏溪成, 漫談電化學. 科學發展專題報導, 2002年(359期): p. 22-27. [10]Markovic, R., et al., Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes. International Journal of Electrochemical Science, 2013. 8(5): p. 7357-7370. [11]Falola, B.D. and I.I. Suni, Low temperature electrochemical deposition of highly active elements. Current Opinion in Solid State and Materials Science, 2015. 19(2): p. 77-84. [12]Güler, E.S., E. Konca, and İ. Karakaya, Effect of Electrodeposition Parameters on the Current Density of Hydrogen Evolution Reaction in Ni and Ni-MoS2 Composite Coatings. International Journal of Electrochemical Science, 2013. 8(4): p. 5496-5505. [13]Banbur-Pawlowska, S., et al., Analysis of electrodeposition parameters influence on cobalt deposit roughness. Applied Surface Science, 2016. 388: p. 805-808. [14]Xuetao, Y., et al., Influence of pulse parameters on the microstructure and microhardness of nickel electrodeposits. Surface and Coatings Technology, 2008. 202(9): p. 1895-1903. [15]Sudagar, J., J. Lian, and W. Sha, Electroless nickel, alloy, composite and nano coatings – A critical review. Journal of Alloys and Compounds, 2013. 571: p. 183-204. [16]Mahmood, A., Z. Zheng, and Y. Chen, Zinc-Bromine Batteries: Challenges, Prospective Solutions, and Future. Adv Sci (Weinh), 2024. 11(3): p. e2305561. [17]Walsh, F.C. and M.E. Herron, Electrocrystallization and electrochemical control of crystal growth: fundamental considerations and electrodeposition of metals. Journal of Physics D: Applied Physics, 1991. 24(2): p. 217. [18]Wang, K., et al., A Phase-Field Model of Dendrite Growth of Electrodeposited Zinc. Journal of The Electrochemical Society, 2019. 166(10): p. D389. [19]Price, P.B., D.A. Vermilyea, and M.B. Webb, On the growth and properties of electrolytic whiskers. Acta Metallurgica, 1958. 6(8): p. 524-531. [20]王維銘, 扣件表面鍍層微觀組織結構之影響. Fastener World, 2022. 195. p.105-107. [21]Younes, O. and E. Gileadi, Electroplating of Ni /W Alloys : I. Ammoniacal Citrate Baths. Journal of The Electrochemical Society, 2002. 149(2): p. C100. [22]Zeng, T.-W. and S.-C. Yen, Effects of Additives in an Electrodeposition Bath on the Surface Morphologic Evolution of Electrodeposited Copper. International Journal of Electrochemical Science, 2021. 16(2): p. 210245. [23]Allahyarzadeh, M.H., et al., Ni-W electrodeposited coatings: Characterization, properties and applications. Surface and Coatings Technology, 2016. 307: p. 978-1010. [24]Wasekar, N.P. and G. Sundararajan, Sliding wear behavior of electrodeposited Ni–W alloy and hard chrome coatings. Wear, 2015. 342-343: p. 340-348. [25]蔡春泉, 直流電沉積Ni-Mo合金之製程發展及磨潤研究. 陸軍後勤季刊, 2017(106年第4): p. 66-90. [26]田福助, 電化學-理論與應用. 2017: 高立圖書有限公司. [27]沈峙璁, 應用超臨界二氧化碳於電鍍鎳磷合金之研究, in 化學工程所. 2010, 國立中正大學: 嘉義縣. p. 126. [28]侯光煦, 脈衝電流電鑄Ni-P鍍層之磨潤特性研究, in 機械工程研究所. 2006, 國立中央大學: 桃園縣. p. 168. [29]Mizushima, I., et al., Development of a new electroplating process for Ni–W alloy deposits. Electrochimica Acta, 2005. 51(5): p. 888-896. [30]Bathini, L., M.J.N.V. Prasad, and N.P. Wasekar, Development of continuous compositional gradient Ni-W coatings utilizing electrodeposition for superior wear resistance under sliding contact. Surface and Coatings Technology, 2022. 445: p. 128728. [31]Li, K. and D. Xue, Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 2006. 110(39): p. 11332-11337. [32]Wu, Y., et al., Influence of boric acid on the electrodepositing process and structures of Ni–W alloy coating. Surface and Coatings Technology, 2003. 173(2-3): p. 259-264. [33]Królikowski, A., et al., Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys. Journal of Solid State Electrochemistry, 2008. 13(2): p. 263-275. [34]Anastas, P.T. and J.C. Warner, Green Chemistry: Theory and Practice. 2000, Oxford University Press. p. 11-20. [35]Nelson, W.M., Green Solvents for Chemistry: Perspectives and Practice. 2003, Oxford University Press. p. 91-132. [36]Tomé, L.I.N., et al., Deep eutectic solvents for the production and application of new materials. Applied Materials Today, 2018. 10: p. 30-50. [37]Flieger, J. and M. Flieger, Ionic liquids toxicity—benefits and threats. International Journal of Molecular Sciences, 2020. 21(17): p. 6267. [38]因敏綸, 金屬氧化物在尿素-氯化膽鹼深共熔溶液的溶解機制, in 環境工程研究所在職專班. 2021, 國立中央大學: 桃園縣. p. 100. [39]Stasiewicz, M., et al., Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicology and Environmental Safety, 2008. 71(1): p. 157-165. [40]Płotka-Wasylka, J., et al., Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 2020. 159: p. 105539. [41]Abbott, A.P., et al., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chainsElectronic supplementary information (ESI) available: plot of conductivity vs. temperature for the ionic liquid formed from zinc chloride and choline chloride (2∶ 1). Chemical communications, 2001(19): p. 2010-2011. [42]Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb), 2003(1): p. 70-1. [43]Lukaczynska, M., et al., Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochimica Acta, 2019. 319: p. 690-704. [44]Cihangir, S., K.S. Ryder, and A. Unal, Detailed investigation of zinc coating behaviours in various deep eutectic solvents. Electrochimica Acta, 2023. 463: p. 142708. [45]Qadr, G., et al., Nickel electrodeposition from deep eutectic solvents containing copper ions at a high temperature. Journal of Molecular Liquids, 2023. 378: p. 121584. [46]楊顯整, 超臨界綠色技術之概述. 綠基會通訊, 2009. p. 7-11. [47]Niessen, H.G. and K. Woelk, Investigations in Supercritical Fluids, in In situ NMR Methods in Catalysis. 2007. p. 69-110. [48]Yoshida, H., et al., Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution. Chemistry Letters, 2002. 31(11): p. 1086-1087. [49]Yoshida, H., et al., New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film. Thin Solid Films, 2004. 446(2): p. 194-199. [50]Kim, M.S., et al., Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2. Chemosphere, 2005. 58(4): p. 459-65. [51]Pandiyarajan, S., et al., Construction of zinc-cobalt alloy film by supercritical-CO2 electrodeposition pathway: Evaluation of electrochemical robustness. Inorganic Chemistry Communications, 2022. 144: p. 109858. [52]Chang, T.-F.M., et al., Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath. Electrochimica Acta, 2010. 55(22): p. 6469-6475. [53]Derbyshire, E. and R. Obeid, Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients, 2020. 12(6): p. 1-31. [54]Zeisel, S.H. and K.A. da Costa, Choline: an essential nutrient for public health. Nutr Rev, 2009. 67(11): p. 615-23. [55]Cheney, B. Introduction to Scanning Electron Microscopy. 2009. p. 1-13. [56]Abdullah, A. and A. Mohammed, Scanning Electron Microscopy (SEM): A Review. 2019. p. 77-85. [57]Bunaciu, A.A., E.G. Udristioiu, and H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem, 2015. 45(4): p. 289-99. [58]Callister, W.D. and D.G. Rethwisch, Materials science and engineering : an introduction. 9th edition ed. 2014, Hoboken, NJ: Wiley. p. 51-88. [59]Nunes, C., A. Mahendrasingam, and R. Suryanarayanan, Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm Res, 2005. 22(11): p. 1942-53. [60]Standardization,ISO, I.O.f., ISO 6507-1, Metallic materials — Vickers hardness test — Part 1: Test method. 2018. p. 1-6. [61]Quade, H., U. Prahl, and W. Bleck, Microstructure based hardening model for transformation induced plasticity (TRIP) steels. Chemicke Listy, 2011. 105: p. s705-s708. [62]Kaluza, M. and R. Olbrycht, Thermographic method for metallic surface roughness evaluation, in Proceedings of the 2022 International Conference on Quantitative InfraRed Thermography. 2022. p. 1-2. [63]Sekler, J., P.A. Steinmann, and H.E. Hintermann, The scratch test: Different critical load determination techniques. Surface and Coatings Technology, 1988. 36(1): p. 519-529. [64]Ahmad, Z., CHAPTER 3 - CORROSION KINETICS, in Principles of Corrosion Engineering and Corrosion Control, Z. Ahmad, Editor. 2006, Butterworth-Heinemann: Oxford. p. 57-119. [65]Jones, D.A., Principles and Prevention of Corrosion. 2nd Edition ed. 1996, Upper Saddle River, New Jersey: Prentice Hall. p. 1-551. [66]Carpenter, C.R., P.H. Shipway, and Y. Zhu, The influence of CNT co-deposition on electrodeposit grain size and hardness. Surface and Coatings Technology, 2011. 205(21): p. 5059-5063. [67]Sahari, A., et al., Nucleation, growth, and morphological properties of electrodeposited nickel films from different baths. Surface Review and Letters (SRL), 2008. 15: p. 717-725. [68]Yasui, M., et al., Effect of metal ion concentration in Ni–W plating solution on surface roughness of Ni–W film. Japanese Journal of Applied Physics, 2015. 55(1S): p. 01AA22. [69]Zhang, L. and D.D. Macdonald, Segregation of alloying elements in passive systems—I. XPS studies on the Ni–W system. Electrochimica Acta, 1998. 43(18): p. 2661-2671. [70]Urcezino, A.S., et al., Electrodeposition study of Ni coatings on copper from choline chloride-based deep eutectic solvents. Journal of the Brazilian Chemical Society, 2017. 28(07): p. 1193-1203. [71]Nagoshi, T., et al., Mechanical properties of nickel fabricated by electroplating with supercritical CO2 emulsion evaluated by micro-compression test using non-tapered micro-sized pillar. Microelectronic Engineering, 2013. 110: p. 270-273. [72]Sriraman, K.R., S. Ganesh Sundara Raman, and S.K. Seshadri, Corrosion behaviour of electrodeposited nanocrystalline Ni–W and Ni–Fe–W alloys. Materials Science and Engineering: A, 2007. 460-461: p. 39-45. [73]Królikowski, A., et al., Effects of compositional and structural features on corrosion behavior of nickel–tungsten alloys. Journal of Solid State Electrochemistry, 2009. 13(2): p. 263-275. [74]Juškėnas, R., et al., XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni–W alloy. Applied Surface Science, 2006. 253(3): p. 1435-1442.
|