|
[1]Oshman, C., Shi, B., Li, C., Yang, R., Lee, Y. C., Peterson, G. P., & Bright, V. M. (2011). The development of polymer-based flat heat pipes. Journal of Microelectromechanical Systems, 20(2), 410-417. [2]Yang, K. S., Yang, T. Y., Tu, C. W., Yeh, C. T., & Lee, M. T. (2015). A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energy Conversion and Management, 100, 37-44. [3]Yang, X., Liu, T., Yan, W., & Wang, S. (2023). Design, fabrication and heat transfer performance study of a novel flexible flat heat pipe. International Communications in Heat and Mass Transfer, 142, 106673. [4]Liang, Q., Li, Y., & Wang, Q. (2017). Cryogenic oscillating heat pipe for conduction-cooled superconducting magnets. IEEE Transactions on Applied Superconductivity, 28(3), 1-5. [5]Chen, A., Jiang, F., Dong, J., Chen, J., & Zhu, Y. (2022). Design, fabrication and thermal performance of a novel ultra-thin loop heat pipe with printed wick structure for mobile electronics cooling. Applied Thermal Engineering, 200, 117683. [6]Oshman, C., Li, Q., Liew, L. A., Yang, R., Bright, V. M., & Lee, Y. C. (2012). Flat flexible polymer heat pipes. Journal of Micromechanics and Microengineering, 23(1), 015001. [7]Hsieh, S. S., & Yang, Y. R. (2013). Design, fabrication and performance tests for a polymer-based flexible flat heat pipe. Energy conversion and management, 70, 10-19. [8]Chen, J. S., & Chou, J. H. (2016). Thermal Performance of Cooling Enhancement of Miniature Flat Plate Heat Pipe Under Different Angle. Journal of Mechanics, 32(1), 93-100. [9]Chen, P., & Pan, Z. (2021). Heat transfer analysis of flat heat pipe with enhanced microchannel shape. IEEE Access, 9, 120833-120843. [10]Chang, C., Han, Z., He, X., Wang, Z., & Ji, Y. (2021). 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs. Scientific reports, 11(1), 8255. [11]Han, Z., & Chang, C. (2023). Fabrication and thermal performance of a polymer-based flexible oscillating heat pipe via 3D printing technology. Polymers, 15(2), 414. [12]Li, C., & Li, J. (2023). Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs. Thermal Science and Engineering Progress, 37, 101542. [13]Choi, J., Jeong, M., Yoo, J., & Seo, M. (2012). A new CPU cooler design based on an active cooling heatsink combined with heat pipes. Applied thermal engineering, 44, 50-56. [14]Yu, Z., Li, Y., Jing, Y., & Wang, J. (2021). Cooling system of outer rotor SPMSM for a two-seater all-electric aircraft based on heat pipe technology. IEEE transactions on transportation electrification, 8(2), 1656-1664. [15]Wang, B., Wang, L., Yang, F., Mu, W., Qin, M., Zhang, F., ... & Liu, J. (2021). Air-cooling system optimization for IGBT modules in MMC using embedded O-shaped heat pipes. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(4), 3992-4003. [16]Chithramol, M. K., & Shine, S. R. (2023). Review on modelling approaches of thermoregulation mechanisms. Journal of Thermal Analysis and Calorimetry, 148(17), 9343-9360. [17]Ravanelli, N., Bongers, C. C., & Jay, O. (2019). The biophysics of human heat exchange. Heat Stress in Sport and Exercise: Thermophysiology of Health and Performance, 29-43. [18]Chen, J. S., & Chou, J. H. (2014). Cooling performance of flat plate heat pipes with different liquid filling ratios. International Journal of Heat and Mass Transfer, 77, 874-882. [19]Lips, S., Lefèvre, F., & Bonjour, J. (2010). Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe. International Journal of Heat and Mass Transfer, 53(4), 694-702. [20]Wang, S., Chen, J., Hu, Y., & Zhang, W. (2011). Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe. Applied Thermal Engineering, 31(14-15), 2367-2373. [21]Höhne, T. (2022). CFD simulation of a heat pipe using the homogeneous model. International Journal of Thermofluids, 15, 100163. [22]Lenhard, R., Malcho, M., & Jandačka, J. (2019). Modelling of heat transfer in the evaporator and condenser of the working fluid in the heat pipe. Heat transfer engineering, 40(3-4), 215-226. [23]Fadhl, B., Wrobel, L. C., & Jouhara, H. (2015). CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a. Applied Thermal Engineering, 78, 482-490. [24]Legierski, J., Wie, B., & De Mey, G. (2006). Measurements and simulations of transient characteristics of heat pipes. Microelectronics reliability, 46(1), 109-115. [25]Jouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., & Wrobel, L. C. (2017). Heat pipe based systems-Advances and applications. Energy, 128, 729-754. [26]Jose, J., & Hotta, T. K. (2023). A comprehensive review of heat pipe: Its types, incorporation techniques, methods of analysis and applications. Thermal Science and Engineering Progress, 42, 101860. [27]Park, G., Kim, J., Woo, S., Yu, J., Khan, S., Kim, S. K., ... & Kim, W. (2022). Modeling heat transfer in humans for body heat harvesting and personal thermal management. Applied Energy, 323, 119609. [28]Ren, S., Han, M., & Fang, J. (2022). Personal cooling garments: a review. Polymers, 14(24), 5522. [29]Wikipedia ,https://zh.wikipedia.org/zh-tw [30]NIST, https://www.nist.gov/ NIST [31]Matweb, https://www.matweb.com/
|