跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛翔騰
研究生(外文):SYUE, SIANG-TENG
論文名稱:應用於人體的熱管
論文名稱(外文):Heat pipe for human body
指導教授:蘇春熺
指導教授(外文):SU, CHUN-HSI
口試委員:盧中仁簡良翰蘇春熺
口試委員(外文):LU, CHUNG-JENCHIEN, LIANG-HANSU, CHUN-HSI
口試日期:2024-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:48
中文關鍵詞:熱管人體散熱壓克力
外文關鍵詞:Heat pipehuman body heat dissipationacrylic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱管在現代熱管理技術中的應用日益廣泛,其高效的熱傳導性能使其在各個領域中發揮重要作用。熱管通過相變化過程和毛細作用迅速傳遞熱量,已成為電子設備散熱和能源管理的關鍵技術。本文希望將熱管應用於於人體散熱。特別是在可穿戴裝置利用熱管有效帶走熱的特性將人體產生的熱量帶走,從而維持皮膚表面的舒適溫度。本文使用壓克力作為熱管材料再將其結合在運動頭帶上。壓克力材料的使用不僅滿足了結構輕便和易於加工的需求,壓克力的透明性在測試時可觀察管內工作流體相變化的過程驗證其有效性。本文共以11支熱管進行實測並以加熱片做為模擬人體溫度的對象,PMMA熱管在最終帶走相當於0.23~0.28 W功率的熱量(約3.3~3.4 ℃),相當於加熱片25%的效率。
Heat pipes are increasingly used in modern thermal management technology, and their efficient heat conduction properties make them play an important role in various fields. Heat pipes rapidly transfer heat through phase change processes and capillary action, and have become a key technology for the heat dissipation and energy management of electronic equipment. This article aims to apply heat pipes to human body heat dissipation, especially in wearable devices. Heat pipes can effectively take away the heat generated by the human body, thereby maintaining a comfortable temperature on the skin surface. This study uses acrylic as the heat pipe material and then combines it with a sports headband. The use of acrylic materials not only meets the needs of a lightweight structure and easy processing, but the transparency of acrylic allows the phase change process of the working fluid in the tube to be observed during testing to verify its effectiveness. In this study, a total of 11 heat pipes were used for actual measurement, and a heating plate was used to simulate human body temperature. The PMMA heat pipe ultimately dissipated heat equivalent to 0.23~0.28 W (approximately 3.3~3.4°C), which is equivalent to 25% of the heating plate's efficiency.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
1 第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究大綱 3
2 第二章 原理與相關研究 4
2.1 熱管類型及相關原理 4
2.1.1 重力熱管與毛細熱管 4
2.1.2 振盪熱管 5
2.1.3 環路熱管 6
2.1.4 旋轉熱管 7
2.2 人體發熱與散熱機制相關研究 8
2.2.1 人體體溫調節 8
2.2.2 人體散熱機制 9
2.2.3 人體外加式散熱 10
3 第三章 實驗 11
3.1 PMMA熱管製作流程圖 11
3.2 PMMA熱管整體尺寸 12
3.3 PMMA熱管內部壓力設定及模擬 12
3.3.1 Ansys Fluent模擬模型設計 13
3.3.2 Ansys Fluent模擬參數設定 15
3.3.3 Ansys Fluent模擬結果 16
3.4 PMMA熱管加工 18
3.4.1 PMMA熱管粗加工 18
3.4.1.1 PMMA熱管加工溫度 19
3.4.1.2 PMMA熱管加工切削速度 20
3.4.2 PMMA熱管細加工(後處理) 21
3.5 PMMA熱管封管(底部) 23
3.6 PMMA熱管封管測漏 23
3.7 PMMA熱管填充工作流體 24
3.8 PMMA熱管抽真空及封管 25
3.9 實驗測試架構 27
3.9.1加熱片溫度曲線 28
第四章 結果與討論 29
4.1 先貼上PMMA熱管再開啟加熱片-實驗結果 29
4.1.1 無銅片與加銅片溫度測試結果 30
4.1.2 實際觀管內水位變化 31
4.1.3 熱阻值計算 31
4.2 先開啟加熱片再貼上熱管-實驗結果 32
4.2.1先開啟加熱片再貼上熱管(42℃) 32
4.2.2先開啟加熱片再貼上熱管(40℃) 33
4.2.3先開啟加熱片再貼上熱管(38℃) 34
4.2.4先開啟加熱片再貼上熱管(36℃) 35
4.2.5實際觀察管內相變化過程 36
4.2.6 熱阻值計算 37
4.3先開啟加熱片再貼上11支熱管-實驗結果 38
4.3.1 先開啟加熱片再貼上11支熱管(42℃) 39
4.3.2 先開啟加熱片再貼上11支熱管(38℃) 40
4.3.3 先開啟加熱片再貼上11支熱管(37℃) 41
4.4 熱管散熱量與重量比較 42
第五章 結論 43
第六章 未來展望 44
參考文獻 45




[1]Oshman, C., Shi, B., Li, C., Yang, R., Lee, Y. C., Peterson, G. P., & Bright, V. M. (2011). The development of polymer-based flat heat pipes. Journal of Microelectromechanical Systems, 20(2), 410-417.
[2]Yang, K. S., Yang, T. Y., Tu, C. W., Yeh, C. T., & Lee, M. T. (2015). A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energy Conversion and Management, 100, 37-44.
[3]Yang, X., Liu, T., Yan, W., & Wang, S. (2023). Design, fabrication and heat transfer performance study of a novel flexible flat heat pipe. International Communications in Heat and Mass Transfer, 142, 106673.
[4]Liang, Q., Li, Y., & Wang, Q. (2017). Cryogenic oscillating heat pipe for conduction-cooled superconducting magnets. IEEE Transactions on Applied Superconductivity, 28(3), 1-5.
[5]Chen, A., Jiang, F., Dong, J., Chen, J., & Zhu, Y. (2022). Design, fabrication and thermal performance of a novel ultra-thin loop heat pipe with printed wick structure for mobile electronics cooling. Applied Thermal Engineering, 200, 117683.
[6]Oshman, C., Li, Q., Liew, L. A., Yang, R., Bright, V. M., & Lee, Y. C. (2012). Flat flexible polymer heat pipes. Journal of Micromechanics and Microengineering, 23(1), 015001.
[7]Hsieh, S. S., & Yang, Y. R. (2013). Design, fabrication and performance tests for a polymer-based flexible flat heat pipe. Energy conversion and management, 70, 10-19.
[8]Chen, J. S., & Chou, J. H. (2016). Thermal Performance of Cooling Enhancement of Miniature Flat Plate Heat Pipe Under Different Angle. Journal of Mechanics, 32(1), 93-100.
[9]Chen, P., & Pan, Z. (2021). Heat transfer analysis of flat heat pipe with enhanced microchannel shape. IEEE Access, 9, 120833-120843.
[10]Chang, C., Han, Z., He, X., Wang, Z., & Ji, Y. (2021). 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs. Scientific reports, 11(1), 8255.
[11]Han, Z., & Chang, C. (2023). Fabrication and thermal performance of a polymer-based flexible oscillating heat pipe via 3D printing technology. Polymers, 15(2), 414.
[12]Li, C., & Li, J. (2023). Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs. Thermal Science and Engineering Progress, 37, 101542.
[13]Choi, J., Jeong, M., Yoo, J., & Seo, M. (2012). A new CPU cooler design based on an active cooling heatsink combined with heat pipes. Applied thermal engineering, 44, 50-56.
[14]Yu, Z., Li, Y., Jing, Y., & Wang, J. (2021). Cooling system of outer rotor SPMSM for a two-seater all-electric aircraft based on heat pipe technology. IEEE transactions on transportation electrification, 8(2), 1656-1664.
[15]Wang, B., Wang, L., Yang, F., Mu, W., Qin, M., Zhang, F., ... & Liu, J. (2021). Air-cooling system optimization for IGBT modules in MMC using embedded O-shaped heat pipes. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(4), 3992-4003.
[16]Chithramol, M. K., & Shine, S. R. (2023). Review on modelling approaches of thermoregulation mechanisms. Journal of Thermal Analysis and Calorimetry, 148(17), 9343-9360.
[17]Ravanelli, N., Bongers, C. C., & Jay, O. (2019). The biophysics of human heat exchange. Heat Stress in Sport and Exercise: Thermophysiology of Health and Performance, 29-43.
[18]Chen, J. S., & Chou, J. H. (2014). Cooling performance of flat plate heat pipes with different liquid filling ratios. International Journal of Heat and Mass Transfer, 77, 874-882.
[19]Lips, S., Lefèvre, F., & Bonjour, J. (2010). Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe. International Journal of Heat and Mass Transfer, 53(4), 694-702.
[20]Wang, S., Chen, J., Hu, Y., & Zhang, W. (2011). Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe. Applied Thermal Engineering, 31(14-15), 2367-2373.
[21]Höhne, T. (2022). CFD simulation of a heat pipe using the homogeneous model. International Journal of Thermofluids, 15, 100163.
[22]Lenhard, R., Malcho, M., & Jandačka, J. (2019). Modelling of heat transfer in the evaporator and condenser of the working fluid in the heat pipe. Heat transfer engineering, 40(3-4), 215-226.
[23]Fadhl, B., Wrobel, L. C., & Jouhara, H. (2015). CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a. Applied Thermal Engineering, 78, 482-490.
[24]Legierski, J., Wie, B., & De Mey, G. (2006). Measurements and simulations of transient characteristics of heat pipes. Microelectronics reliability, 46(1), 109-115.
[25]Jouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., & Wrobel, L. C. (2017). Heat pipe based systems-Advances and applications. Energy, 128, 729-754.
[26]Jose, J., & Hotta, T. K. (2023). A comprehensive review of heat pipe: Its types, incorporation techniques, methods of analysis and applications. Thermal Science and Engineering Progress, 42, 101860.
[27]Park, G., Kim, J., Woo, S., Yu, J., Khan, S., Kim, S. K., ... & Kim, W. (2022). Modeling heat transfer in humans for body heat harvesting and personal thermal management. Applied Energy, 323, 119609.
[28]Ren, S., Han, M., & Fang, J. (2022). Personal cooling garments: a review. Polymers, 14(24), 5522.
[29]Wikipedia ,https://zh.wikipedia.org/zh-tw
[30]NIST, https://www.nist.gov/ NIST
[31]Matweb, https://www.matweb.com/

電子全文 電子全文(網際網路公開日期:20270801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top