跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 00:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:凌子楓
研究生(外文):LING, TSZ-FUNG
論文名稱:以生命週期評估配合遙測量化自動化工廠服務運作對於環境影響之相關性研究——以香港某所大型汽車保養廠為例
論文名稱(外文):Integrating Life Cycle Assessment and Remote Sensing to Quantify the Environmental Impacts of An Automated Factory Service Operation - A Case Study from a Large Car Maintenance Factory in Hong Kong
指導教授:杜敏誠
指導教授(外文):TU, MIN-CHENG
口試委員:杜敏誠陳起鳳高思懷劉明仁
口試委員(外文):TU, MIN-CHENGCHEN, CHI-FENGGAU, SUE-HUAILIU, MING-JEN
口試日期:2024-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:96
中文關鍵詞:汽車保養服務生命週期評估遙感探測常態化差異植生指標Sentinel 2 MSI+
外文關鍵詞:Automotive Maintenance ServiceLife Cycle AssessmentRemote SensingNormalized Difference Vegetation IndexSentinel 2 MSI+
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
汽車產業是世界五大產業的其中之一,除了影響整個全球的經濟,也涉及到社會上的發展。其中,全球汽車行業其中一個主要的業務爲汽車保養,目的在於延長汽車壽命而提高人們的生活素質,因此與汽車產業有著密不可分的關係。隨着汽車的使用年限越來越長,加上香港本地從事汽車維修相關行業的從業員短缺,為了提高汽車保養服務體系的效率,以及配合香港人流動性高的生活節奏,從2015年開始逐漸建立自動化的汽車保養廠取代人工化,開拓更大汽車保養服務產業運作的同時,減少了人力需求和節省時間。然而,該模式的擴展必會影響環境,其為需要解決的重要議題,因此需要對該行業所帶來的環境影響進行評估。
本研究利用生命週期評估關注汽車保養業全球暖化潛勢(GWP)和生態系統的間接足跡,示範場域位於香港的某個大型汽車保養廠。另使用Sentinel 2 MSI+衛星圖像配合遙感探測技術分析大型汽車保養廠的直接足跡,即常態化差異植生指標,並以實驗區和對照區的對比分析,探討出研究範圍的運作影響植被覆蓋面積之損失度,以及計算植物單位面積碳儲量評估吸收該工廠服務時所直接釋放二氧化碳的強度。
研究結果顯示,該場域使用化石燃料進行高壓發電,可從GWP的數據預估二氧化碳排放量較高,相當於每天要負擔一部普通小型車的重量,並從實驗區與對照區所計算植被覆蓋面積之損失度結果,推斷出生態系統的損害是與人類活動相關(該工廠服務的運作)之可能性,以及研究範圍附近的植物不能完全負擔全部該工廠所直接釋放的二氧化碳,導致提高人類健康的損害。
最後透過以上各項數據的綜合分析給予結論與建議,期望未來以情景分析的方式為整套汽車保養服務業建立可適用之減碳方案,並對研究範圍附近的林地進行碳抵消評估和生物多樣性等相關性研究,幫助管理與規劃該附近土地的政策,為業界、政府及利害關係人,在任何工廠營運時作為環境評鑒之參考。
The automotive industry is one of the world's five major industries, significantly impacting the global economy and societal development. Within this sector, the automobile maintenance industry plays a crucial role, aiming to extend the lifespan of vehicles and improve people's quality of life. Consequently, it is closely linked to the overall automotive industry. In Hong Kong, the increasing lifespan of automobiles and the shortage of local practitioners in the automotive maintenance industry have highlighted the need for greater efficiency in the maintenance service system. To address this, automated automotive maintenance factories have gradually been established since 2015, replacing manual labor. This shift aims to enhance service efficiency, cater to the high mobility of Hong Kong residents, expand the automotive maintenance service industry, reduce manpower needs, and save time. However, the expansion of this model poses environmental challenges that need to be addressed, necessitating an assessment of the environmental impacts of this industry.
This study utilizes life cycle assessment (LCA) to focus on the Global Warming Potential (GWP) and ecosystems of the automotive maintenance industry. The demonstration site is located at an automotive maintenance facility in Hong Kong. Sentinel 2 MSI+ satellite imagery with remote sensing technology was used to analyze the direct footprint of a large-scale automotive maintenance plant. The study employed the Normalized difference vegetation index (NDVI) and conducted a comparative analysis between experimental and control areas to investigate the impact of plant operations on the loss of vegetation area. Additionally, the carbon stock of plants per unit area was calculated to assess their CO2 absorption capacity during their service life. The study found that the facility uses fossil fuels for high-pressure electricity generation, leading to high CO2 emissions equivalent to the weight of an average small car per day, as indicated by the GWP data. Analysis of vegetation health and loss in both the experimental and control areas suggested that ecosystem damage is linked to human activities (i.e., plant operations). The plants near the study area were unable to fully absorb the CO2 emissions from the plant, leading to increased human health risks.
In conclusion, the study offers comprehensive data analysis, conclusions, and recommendations. It proposes establishing applicable carbon reduction strategies for the automotive maintenance industry through scenario analysis and conducting studies on carbon offsetting and biodiversity. These findings aim to inform the planning and management of forest land policies near the study area and serve as a reference for industry stakeholders, the government, and others in assessing the environmental impacts of factory operations.
目錄
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構 3
第二章 文獻回顧 6
2.1 汽車保養業 6
2.1.1汽車保養業的定義及業務範圍 6
2.1.2汽車保養業發展之重要性 7
2.1.3汽車保養業常見的環境污染及相關問題 9
2.2 生命週期評估 11
2.3 碳排放之介紹 14
2.4 遙測資料的應用 16
2.5 LCA配合遙測量化環境衝擊影響相關研究 17
第三章 研究方法 21
3.1 研究流程 21
3.2 研究目標之生命週期評估 23
3.2.1研究目標 23
3.2.2範疇邊界設定 23
3.2.3盤查項目 24
3.2.4環境衝擊評估方法 26
3.3 碳排放評估方法 30
3.4 情境假設 31
3.5 衛星遙測資料 32
3.5.1 Sentinel 2 32
3.5.2 衛星資料的篩選 34
3.5.3 實驗區與對照區的選定 34
3.5.4 常態化差異植生指標 36
3.5.5 碳儲量評估方法 37
3.6 數據彙整 38
3.7 研究限制及假設 39
第四章 結果與討論 41
4.1 環境衝擊計算結果 41
4.1.1 汽車保養服務之環境衝擊 41
4.2 碳排放計算結果 45
4.3 情境假設結果 47
4.4 遙測數據相關性分析整理 48
4.4.1 實驗區相關性分析 48
4.4.2 對照區相關性分析 49
4.4.3 碳儲量計算結果 50
4.5 討論 51
4.5.1 環境衝擊計算結果討論 51
4.5.2 碳排放計算結果討論 52
4.5.4 情境假設結果討論 52
4.5.4 遙測數據資料整理討論 53
4.5.5 小結 53
第五章 結論與建議 55
5.1 結論 55
5.2 建議 57
參考文獻 58
附錄 68
A. 附錄A本研究實驗區之情況 69
B. 附錄B本研究對照區之情況 72
C. 附錄C本研究實驗區每個位置NDVI土地分類數值 75
D. 附錄D本研究對照區每個位置NDVI土地分類數值 84
英文文獻:
Abdullahi, S., & Pradhan, B. (2016). Sustainable brownfields land use change modelling using GIS-Based weights-of-evidence approach. Applied Spatial Analysis and Policy, 9(1), 21-38.
Angitha, K. V., & Anand, K. B. (2021). Lifecycle assessment of alkali activated cement concrete. Journal of Physics: Conference Series, 2070, 012241.
Atkinson, P. M., & Curran, P. J. (1997). Choosing an appropriate spatial resolution for remote sensing investigations. Photogrammetric Engineering & Remote Sensing, 63(12), 1345-1351.
Automation World. (2014). Automation’s Environmental Benefit. https://www.automationworld.com/automations-environmental-benefit (Accessed 24 May 2023).
Arvanitoyannis, I. S. (2008). ISO 14040: Life Cycle Assessment (LCA) -Principles and Guidelines. In: Waste Management for the Food Industries. Academic Press, Thessaly, pp. 97-126.
Akbar, T. A., Hassan, Q. K., Ishaq, S., Batool, M., Butt, H. J., & Jabbar, H. (2019). Investigative Spatial Distribution and Modelling of Existing and Future Urban Land Changes and Its Impact on Urbanization and Economy. Remote Sensing, 11(2), 105.
Barnett, N., Costenaro, D., & Rohmund, I. (2017). “Direct and Indirect Impacts of Robots on Future Electricity Load,” 2017 ACEEE Summer Study on Energy Efficiency in Industry, Denver, Colorado, 1-9.
British Petroleum. (2019). BP Statistical Review of World Energy 2019. https://www.bp.com/en/global/corporate/energy-economics/webcast-and-on-demand.html#tab_sr-2019 (Accessed 22 November 2023).
Boden, T. A., Marland, G., & Andres, R. J. (2010). Global, Regional, and National Fossil-Fuel CO2 Emissions, 1751 - 2007. http;//doi.org/10.3334/CDIAC/00001_2010 (Accessed 20 March 2024).
Chen, B., Yang, Q., Li, J. S., & Chen, G. Q. (2017). Decoupling analysis on energy consumption, embodied GHG emissions and economic growth - The case study of Macao. Renewable and Sustainable Energy Reviews, 67, 662-672.
Climate Focus. (2015). COP21 Paris 2015 - Climate Focus Overall Summary and Client Briefs. https://climatefocus.com/publications/cop21-paris-2015-climate-focus-overall-summary-and-client-briefs/ (Accessed 16 April 2023).
Copernicus. (2022). Sentinel-2. https://www.copernicus.eu/en (Accessed 5 July 2024).
Cowen, D. J., & Jensen, J. R. (1998). Extraction and modeling of urban attributes using remote sensing technology. In: People and Pixels: Linking Remote Sensing and Social Science. National Academy Press, Washington, D.C., pp. 164-188.
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., & Vignati, E. (2019). Fossil CO2 and GHG emissions of all world countries, EUR 29849 EN, Publications Office of the European Union, Luxembourg.
Curran, P. J., & Williamson, H. D. (1986). Sample size for ground and remotely sensed data. Remote Sensing of Environment, 20(1), 31-41.
Chu, J. L., Suo, A. N., Liu, B. Q., Zhao, J. H., & Wang, C. Y. (2019). Remote Sensing-Based Life Cycle Analysis of Land Reclamation Processes: Case Study on Tianjin Binhai New Area. Journal of Coastal Research, 90, 77-85.
Donnay, J. P., Barnsley, M. J., & Longley, P. A. (2000). Remote Sensing and Urban Analysis: A Research Agenda. In: Remote Sensing and Urban Analysis: GISDATA 9. CRC Press, London, pp. 228-239.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36.
Dorber, M., May, R., & Verones, F. (2018). Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment. Environmental Science and Technology, 52(4), 2375-2384.
Dou, X. Y., Deng, Z., Sun, T. C., Ke, P. Y., Zhu, B. Q., Shan, Y. L., & Liu, Z. (2021). Global and local carbon footprints of city of Hong Kong and Macao from 2000 to 2015. Resources, Conservation and Recycling, 164, 105167.
Davies, W. J., & Shen, J. B. (2020). Reducing the environmental footprint of food and farming with Agriculture Green Development. Frontiers of Agricultural Science and Engineering, 7(1), 1-4.
Engelbrecht, D., Biswas, W., Pritchard, D., & Ahmad, W. (2015). Integrated spatial technology to mitigate greenhouse gas emissions in grain production. Remote Sensing Applications: Society and Environment, 2, 44-55.
Esteves, V. P. P., Esteves, E. M. M., Bungenstab, D. J., Loebmann, D. G. D. W., Victoria, D. D., Vicente, L. E., Araújo, O. D. F., & Morgado, C. D. V. (2016). Land use change (LUC) analysis and life cycle assessment (LCA) of Brazilian soybean biodiesel. Clean Technologies and Environmental Policy, 18(6), 1655-1673.
Fisher, R. P., Hobgen, S. E., Haleberek, K., Sula, N., & Mandaya, I. (2018). Free satellite imagery and digital elevation model analyses enabling natural resource management in the developing world: case studies from Eastern Indonesia. Singapore Journal of Tropical Geography, 39(1), 45-61.
Gobron, N., Pinty, B., Verstraete, M. M., & Widlowski, J. L. (2000). Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications. IEEE Transactions on Geoscience and Remote Sensing, 38(6), 2489-2505.
Govaerts, Y. M., Verstraete, M. M., Pinty, B., & Gobron, N. (1999). Designing optimal spectral indices: A feasibility and proof of concept study. International Journal of Remote Sensing, 20(9), 1853-1873.
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756-760.
Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., & Bowyer, P. (2007). Can
we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence. Global Change Biology, 13(7), 1484-1497.
Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors, 8(4), 2136-2160.
Habib, A., Abuzar, M. K., Ahmad, I., Shakir, U., Mahmood, S. A., Khan, M. A., & Mahmood, M. F. (2019). Detection of mineral alteration induced by hydrocarbon microseepages by using remotely sensed data in the Fateh Jang area of the Northern Potwar region of Pakistan. Arabian Journal Geosciences, 12(4), 121.
Hamdan, O., Khairunnisa, M. R., Ammar, A. A., Hasmadi, I. M., & Aziz, H. K. (2013). Mangrove Carbon Stock Assessment by Optical Satellite Imagery. Journal of Tropical Forest Science, 25(4), 554-565.
Huang, R., Lv, G. N., Chen, M., & Zhu, Z. Y. (2019). CO2 emissions embodied in trade: Evidence for Hong Kong SAR. Journal of Cleaner Production, 239, 117918.
Hydrocarbon Processing. (2013). How process automation can increase energy efficiency. https://www.hydrocarbonprocessing.com/magazine/2013/ (Accessed 16 May 2023).
Huang, C. H., Xie, L. J., Chen, W. Z., Lin, Y., Wu, Y. X., Li, P. H., Chen, W. R., Yang, W., Deng, J.S. (2023). Remote-sensing extraction and carbon emission reduction benefit assessment for centralized photovoltaic power plants in Agrivoltaic systems. Applied Energy, 370, 123585.
Hauschild, M. Z., & Huijbregts, M. A. J. (2015). Introducing Life Cycle Impact Assessment. In: Life Cycle Impact Assessment. Springer, Dordrecht, pp. 1-16.
International Energy Agency. (2019). CO2 Emissions from Fuel Combustion 2019. https://doi.org/10.1787/2a701673-en (Accessed 24 May 2024).
IPCC. (2006). 2006 IPCC Guidelines for national greenhouse gas inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (Accessed 14 April 2024).
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Iwatsuki, Y., Nakajima, K., Yamano, H., Otsuki, A., & Murakami, S. (2018). Variation and changes in land-use intensities behind nickel mining: coupling operational and satellite data. Resources, Conservation and Recycling, 134, 361-366.
Islam, K., Vilaysouk, X., & Murakami, S. (2020). Integrating remote sensing and life cycle assessment to quantify the environmental impacts of copper-silver-gold mining: A case study from Laos. Resources, Conservation and Recycling, 154, 104630.
Jensen, J. R., & Cowen, D. C. (1999). Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogrammetric Engineering & Remote Sensing, 65, 611-622.
Jiang, Z., Ding, Z., Zhang, H., Cai, W., & Liu, Y. (2019). Data-driven ecological performance evaluation for remanufacturing process. Energy Conversion and Management, 198, 111844.
Justice, C. O., Townshend, J. R. G., Holben, B. N., & Tucker, C. J. (1985). Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 6(8), 1271-1318.
Kennedy, C., Steinberger, J., Gasson, B., Hansen, Y., Hillman, T., Havránek, M., Pataki, D., Phdungsilp, A., Ramaswami, A., & Mendez, G. V. (2010). Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy, 38(9), 4828-4837.
Kennedy, C. A., Ramaswami, A., & Carney, S. (2011). Greenhouse Gas Emission Baselines for Global Cities and Metropolitan Regions. In: Cities and Climate Change: Responding to an Urgent Agenda. World Bank, Washington, D.C., pp. 15-54.
Li, N., Yan, C. Z., & Xie, J. L. (2015). Remote sensing monitoring recent rapid increase of coal mining activity of an important energy base in northern China, a case study of Mu Us Sandy Land. Resources, Conservation and Recycling, 94, 129-135.
Liu, Z., Liang, S., Geng, Y., Xue, B., Xi, F., Pan, Y., Zhang, T., & Fujita, T. (2012). Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy, 37(1), 245-254.
Lourenço, P., Teodoro, A. C., Gonçalves, J. A., Honrado, J. P., Cunha, M., & Sillero, N. (2020). Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 95, 102263.
Lombardi, M., Laiola, E., Tricase, C., & Rana, R. (2017). Assessing the urban carbon footprint: An overview. Environmental Impact Assessment Review, 66, 43-52.
Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2407.
Ma, R., Li, X., & Chen, J. (2021). An elastic urban morpho-blocks (EUM) modelling method for urban building morphological analysis and feature clustering. Building and Environment, 192, 107646.
Milà i Canals, L., Bauer, C., Depestele, J., Dubreuil, A., Knuchel, R. F., Gaillard, G., Michelsen, O., Müller-Wenk, R., & Rydgren, B. (2007). Key elements in a framework for land use impact assessment within LCA. The International Journal of Life Cycle Assessment, 12(1), 5-15.
Miranda, M., Burris, P., Bingcang, J. F., & Shearman, P. (2003). Mining and Critical Ecosystems: Mapping the Risks. Journal of Cleaner Production, 14(12), 1181-1183.
Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481-486.
NASA Earth Data. (2023). Multispectral Instrument (MSI). https://www.earthdata.nasa.gov/sensors/sentinel-2-msi (Accessed 1 July 2024).
Navarro, J., Bryan, B. A., Marinoni, O., Eady, S., & Halog, A. (2016). Mapping agriculture's impact by combining farm management handbooks, life-cycle assessment and search engine science. Environmental Modelling & Software, 80, 54-65.
Patra, K. K., & Bhattacharjee, D. (2012). Engineering, Economics and Costing. S Chand & Co Ltd, New Delhi, pp. 139-175.
Paull, D., Banks, G. A., Ballard, C. H., & Gillieson, D. (2006). Monitoring the environmental impact of mining in remote locations through remotely sensed data. Geocarto International, 21(1), 33-42.
Pinty, B., Leprieur, C., & Verstraete, M. M. (1993). Towards a quantitative interpretation of spectral vegetation indexes. Remote Sensing Reviews, 7(2), 127-150.
Sieber, P., Ericsson, N., Hammar, T., & Hansson, P. A. (2022). Albedo impacts of current agricultural land use: Crop-specific albedo from MODIS data and inclusion in LCA of crop production. Science of the Total Environment, 835, 155455.
Schmidt, J. H., Weidema, B. P., & Brandão, M. (2015). A framework for modelling indirect land use changes in Life Cycle Assessment. Journal of Clean Production, 99, 230-238.
Tost, M., Bayer, B., Hitch, M., Lutter, S., Moser, P., & Feiel, S. (2018). Metal mining’s environmental pressures: A review and updated estimates on CO2 emissions, water use, and land requirements. Sustainability, 10(8), 2881.
Technický týdeník. (2015). Od 1. průmyslové revoluce ke 4. https://www.technickytydenik.cz/rubriky/ekonomika-byznys/od-1-prumyslove-revoluce-ke-4_31001.html (Accessed 16 May 2023).
Tigges, J., & Lakes, T. (2017). High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments. Carbon Balance Management, 12, 17.
United Nations. (2017). The Paris Agreement. https://unfccc.int/process/the-paris-agreement/the-paris-agreement (Accessed 16 April 2018).
Verstraete, M. M., Pinty, B., & Myneni, R. B. (1996). Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sensing of Environment, 58(2), 201-214.
Wang, T., Kazak, J., Han, Q., & de Vries, B. (2019). A framework for path-dependent industrial land transition analysis using vector data. European Planning Studies, 27(7), 1391-1412.
Wiedmann, T., & Minx, J. (2008). A Definition of 'Carbon Footprint'. In: Ecological Economics Research Trends. Hauppauge, New York, pp. 55-65.
Wagendorp, T., Gulinck, H., Coppin, P., & Muys, B. (2006). Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy, 31(1), 112-125.
Yang, L. M., Xian, G., Klaver, J. M., & Deal, B. (2003). Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering & Remote Sensing, 69(9), 1003-1010.
Yang, X., & Lo, C. P. (2002). Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 23(9), 1775-1798.
Yu, B., Li, L., Tian, X., Yu, Q. N., Liu, J. Z., & Wang, Q. (2021). Material stock quantification and environmental impact analysis of urban road systems. Transportation Research Part D: Transport and Environment, 93, 102756.
Zhao, L., Mao, G., Wang, Y., Du, H., Zou, H., Zuo, J., Liu, Y., & Huisingh, D. (2017). How to achieve low/no-fossil carbon transformations: With a special focus upon mechanisms, technologies and policies. Journal of Cleaner Production, 163, 15-23.
Zhu, Z., Wulder, M. A., Roy, D. P., Woodcock, C. E., Hansen, M. C., Radeloff, V. C., Healey, S. P., Schaaf, C., Hostert, P., Strobl, P., Pekel, J. F., Lymburner, L., Pahlevan, N., & Scambos, T. A. (2019). Benefits of the free and open Landsat data policy. Remote Sensing Environment, 224, 382-385.
中文文獻:
尹惠妍、張志偉、李海奎(2019)。中國主要喬木樹種生物量方程式。中南林業科技大學學報,5,63-69。
宋英(2016)。《巴黎協定》與全球環境治理。北京大學學報(哲學社會科學版),53(6),59-67。
香港政府汽車保險專區(2021)。【新手車主必讀】6大檢查、日常保養及維修須知。檢自https://www.automate-app.com/blog/汽車-維修-保養
香港政府統計處(2009),香港標準行業分類2.0版。檢自https://www.censtatd.gov.hk/tc/page_698.html
香港特別行政區政府環境保護處(2017),汽車維修業環保指南。檢自https://www.epd.gov.hk/epd/tc_chi/greengarage/guidelines/files/gbkwhole.pdf
香港運輸署統計處(2023),運輸署統計數字。檢自https://www.td.gov.hk/tc/transport_in_hong_kong/transport_figures/index.html
香港運輸署(2023),運輸資料年報2023。檢自https://www.td.gov.hk/mini_site/atd/2023/tc/index.html
香港政府統計處(2023),香港零售業銷貨額調查。檢自https://www.censtatd.gov.hk/tc/scode530.html
香港漁農自然護理署(2023)。樹木生物量開放數據計劃。檢自https://www.natureintouch.gov.hk/documents/275279/1049958/Appendix_ClimateHK_CalculationBiomassOfATree_tc.xlsx/ef29190c-bb7a-ccd1-c287-1ee37b789c9e?t=1677209657205
耿慶玲、陳曉青、赫曉慧、田智慧(2022)。中國不同植被類型歸一化植被指數對氣候變遷與人類活動的反應。生態學報,42(9),3557-3568。
財團法人塑膠工業技術發展中心,LCA產品生命週期評估。檢自https://www.pidc.org.tw/safety.php?id=168
中小企業綠色環保資訊網,溫室氣體盤查涵蓋範疇。檢自https://green.sme.gov.tw/detail.php?lang=tw&type=7&id=91
中國國務院(2015),中國製造2025。檢自http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm.
張朔川、湯軍、高賢君(2021)。2001-2020年植被覆蓋動態變化及預測,科學技術與工程,31,13254-13261。
經濟報工業局(2010),汽車修理業管理方案。檢自http://202.39.131.142/web_law/ShowMaster.php?LawID=B0041
林裕仁(1998)。森林減碳能力之推算方法,農政與農情,193,77-81。
香港政府碳中和及可持續發展資訊網,溫室氣體排放及趨勢。檢自https://cnsd.gov.hk/tc/
電子全文 電子全文(網際網路公開日期:20290812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊