跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓宇謙
研究生(外文):CHO, YU-CHIEN
論文名稱:公共污水處理廠放流水再利用於水稻灌溉之可行性探討
論文名稱(外文):The Feasibility Study of Effluent from Public Sewage Treatment Plants on Irrigated Paddy Field
指導教授:陳世楷陳世楷引用關係
指導教授(外文):CHEN, SHIH-KAI
口試委員:陳世楷張誠信陳豐文朱子偉
口試委員(外文):CHEN, SHIH-KAIJANG, CHENG-SHINCHEN, FENG-WENCHU, TZYY-WOEI
口試日期:2024-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:185
中文關鍵詞:污水處理廠再生水灌溉水稻田
外文關鍵詞:Wastewater Treatment PlantsReclaimed WaterIrrigationNitrogenPaddy Field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
全球氣候變遷及水資源不足等問題,業已導致臺灣農業灌溉水源供應不穩定,進而影響農業生產。而全臺公共污水處理處理水量已高達約每日374萬噸,卻未曾將公共污水處理廠放流水作為農業水資源進行利用。為妥適應用此一龐大之再生水資源,本研究首先透過國內外文獻及相關法規規範蒐集彙整,盤點再生水利用於農業灌溉之成功經驗及限制條件,再藉由楊梅水資源回收中心試驗田區(再生水灌溉及傳統水源施作)之各項現地試驗觀測,探討田區氮素削減因素及相關水質變化,並進一步分析以再生水間歇性灌溉及減施化肥等操作對水稻栽培之影響。
研究結果顯示引灌楊梅水資源回收中心放流水可能造成水稻重金屬污染、鹽害(EC、氯鹽)及鈉害(硫酸鹽、SAR)之風險應低於引灌原有灌溉水源-社子溪;而本研究試驗田區採用間歇灌溉方式之1日內氨氮平均削減率約為75 %且未造成相關不良影響。此外,試驗田區之湛水NO3--N幾乎僅於灌溉當日檢出,雖然湛水為氧化環境,有利NO3--N之產生,但在進入泥濘根系層之還原環境後將導致脫硝作用發生,而銨離子之高吸附性,使其在進入泥濘根系層後,亦不易進行硝化作用。亦證實灌溉水體中的氨氮應可取代部分化學氮素肥料,達到減少施肥量及降低成本之效果。並建立放流水氨氮濃度對應氮肥施用量的速查表,農民僅需掌握灌溉水的平均氨氮濃度及田區土壤類別,即可快速查詢本研究建議之氮肥合理施用量。本研究期能增進臺灣公共污水處理廠放流水之再利用率,達成提高用水韌性、促進農業合理化施肥、保護農地、維護食安及節能減碳等多贏目標。

The global climate change and scarcity of water resources have led to unstable agricultural irrigation water supply in Taiwan, which in turn affects agricultural production. Meanwhile, the total daily public wastewater treatment volume in Taiwan has reached about 3.74 million tons, but the treated effluent from public wastewater treatment plants has not been utilized as an agricultural water resource. This study aims to appropriately utilize this vast reclaimed water resource for agricultural irrigation. First, the successful experiences and limiting factors of reclaimed water use for agricultural irrigation were collected and summarized through literature review and relevant regulations. Then, through field experiments in the test plot area of the Yangmei Water Resource Recovery Center, the study explored the factors for nitrogen reduction and related water quality changes in paddy fields under reclaimed water and traditional water source irrigation, and further analyzed the impact of intermittent irrigation with reclaimed water and reduced chemical fertilizer application on rice cultivation. The research results show that the irrigation with the effluent from the Yangmei Water Resource Recovery Center may pose a lower risk of heavy metal contamination, salinity (EC, chloride) and sodium hazard (sulfate, SAR) to rice plant compared to the original irrigation water source - Shezi Creek. The average ammonia nitrogen reduction rate within one day in the test plot area using intermittent irrigation was about 75% without causing relevant adverse effects. Furthermore, nitrate-nitrogen was almost only detected on the irrigation day in the ponding water of the test plot area. Although the ponding water is an oxidizing environment favorable for the generation of nitrate-nitrogen, the denitrification process will occur when it enters the reduced environment of the muddy root zone, and the high adsorption of ammonium ions also makes it difficult for nitrification to occur after entering the muddy root zone. This study also confirmed that the ammonia nitrogen in the irrigation water can replace part of the chemical nitrogen fertilizer, achieving the effect of reducing fertilizer application and lowering production costs. A quick reference table has been established for the correspondence between the ammonia nitrogen concentration in the effluent and the recommended nitrogen fertilizer application rate, allowing farmers to quickly determine the reasonable nitrogen fertilizer application rate based on the average ammonia nitrogen concentration of the irrigation water and the soil type of the paddy fields. This research aim to increase the reuse rate of public wastewater treatment plant effluent, and achieve the multiple goals of improving water resilience, promoting rational fertilization in agriculture, protecting farmland, maintaining food safety, and reducing energy consumption and carbon emissions.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 xi
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究流程架構 3
2 第二章 文獻回顧 5
2.1 國內外廢污水再生利用於農業之近況 5
2.1.1 國內污水再生利用於農業之現況 5
2.1.2 國內污水再生利用於農業之法規 7
2.1.3 全球污水再生應用於農業之近況 9
2.1.4 全球污水再生應用於農業之相關規範 11
2.2 田間氮循環相關文獻 13
2.3 水稻之灌溉水氮濃度容忍度相關文獻 18
2.4 楊梅水資源回收中心基本資料盤點 22
3 第三章 研究場域與方法 24
3.1 研究場域 24
3.1.1 試驗田區配置及灌溉水源 24
3.1.2 水稻品種選定及灌溉方式 27
3.1.3 本研究施肥方法 31
3.1.4 試驗田區稻作栽培紀錄 33
3.2 試驗田區灌溉水源及田間湛水水質檢測 34
3.2.1 試驗田區灌溉水源水質檢測 34
3.2.2 試驗田區田間湛水水質檢測 39
4 第四章 結果與討論 41
4.1 灌溉水源水質探討 41
4.1.1 灌溉水質基準值 41
4.1.2 硝酸鹽氮及磷酸鹽 61
4.2 田間湛水水質探討 64
4.2.1 試驗田區全期湛水水質探討 70
4.2.2 歷次引灌湛水期間水質探討-氫離子濃度指數(pH) 115
4.2.3 歷次引灌湛水期間水質探討-導電度(EC) 117
4.2.4 歷次引灌湛水期間水質探討-溶氧(DO) 120
4.2.5 歷次引灌湛水期間水質探討-氧化還原電位(ORP) 124
4.2.6 歷次引灌湛水期間水質探討-氨氮(NH3-N) 129
4.2.7 歷次引灌湛水期間水質探討-硝酸鹽(NO3--N) 132
4.2.8 歷次引灌湛水期間水質探討-磷酸鹽(PO43-) 136
4.3 田間氮素分析 139
4.3.1 田間氮素來源分析 139
4.3.2 作物氮素吸收量分析 142
4.3.3 灌溉後湛水氨氮削減分析 145
4.4 放流水灌溉氮肥減用估算方式之建立 151
4.5 綜合討論 161
4.5.1 試驗田區水質變化探討 161
4.5.2 國內公共污水處理廠放流水應用於農業灌溉之水質可行性 163
4.5.3 國內公共污水處理廠放流水應用於農業灌溉之進程 166
4.5.4 本研究試驗田區應用放流水灌溉水稻之成果 167
4.5.5 國內再生水應用於農業灌溉之政策及法規研擬建議 169
5 第五章 結論與建議 171
5.1 結論 171
5.2 建議 173
參考文獻 175
1.An, Y., Jiso, X., Gu, Z., Shi, C., Liu, K. (2020). Effects of straw return and aeration on oxygen status and redox environment in flooded soil, Soil and Water Research 17(1), P.29-35.
2.Antonopoulos, V. Z. (2001). Simulation of water and nitrogen balances of irrigated and fertilized corn-crop soil. Journal of irrigation and drainage engineering, 127(2).
3.Antonopoulos, V. Z. (2010). Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece. Agricultural Water Management, 98(2).
4.Arkley, R. J. (1963). Calculation of carbonate and water movement in soil from climatic data. Soil Science, 96(4), P.239-248.
5.Aulakh, M.S., Singh, B. (1997). Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nut. Cyc. Agroecosyst 47.
6.Ayers, R.S., Westcot, D.W. (1994). Water quality for agriculture, irrigation and drainage paper. http://www.fao.org/DOCREP/003/T0234E/T0234E00.htm.
7.Brandon, D.M., Wells, B.R. (1986). Improving nitrogen fertilization in mechanized rice culture. Fert. Res 9.
8.Charpentier, J., Florentz, M., David, G. (1987). Oxidation-reduction potential (ORP) regulation: a way to optimize pollution removal and energy saving in the low load activated sludge process, Water Sci Technol 19 (3-4), P.645-655.
9.Chen, S. K., Jang C. S., Chen S. M., Chen K. H. (2013). Effect of N-fertilizer application on return flow water quality from a terraced paddy field in Northern Taiwan. Paddy And Water Environment. 11.
10.Chowdary,V.M., Rao,N.H., Sarma,P.B.S., (2004). A coupled soil water and nitrogen balance model for flooded rice fields in India, Agriculture Ecosystems and Environment 103.
11.Chung, S.O., Kim, H.S., Kim, J.S. (2003). Model development for nutrient loading from paddy rice fields , Agricultural Water Management , 62, P.1-17.
12.D'Avanzo, C., Kremer, J.N. (1994). Diel Oxygen Dynamics and Anoxic Events in an Eutrophic Estuary of Waquoit Bay, Massachusetts, Estuaries Vol. 17, No. 1, Part B, P.131-139.
13.Duan Y.H., Zhang Y.L., Shen Q.R., Wang S.W.(2006). Nitrate Effect on Rice Growth and Nitrogen Absorption and Assimilation at Different Growth Stages, Pedosphere, Volume 16, Issue 6.
14.Eslamian, S. (Ed.) (2016). Urban Water Reuse Handbook; CRC Press: Boca Raton, FL, USA.
15.FAO., Food and Agriculture Organization. (1992). The use of saline waters for crop production. Irrigation and drainage paper 48.
16.FAO., Food and Agriculture Organization. (2017). http://www.fao.org/nr/water/aquastat/data/query/results.html.
17.FAO., Food and Agriculture Organization. (2022). Soils for nutrition state of the art.
18.FAO., Food and Agriculture Organization. (2024). Chapter 6 - ETc - Single crop coefficient (Kc). https://www.fao.org/4/X0490E/x0490e0b.htm.
19.Geilfus, C. M. (2018a). Chloride: From nutrient to toxicant. Plant Cell Physiol, 59 (5), P.877-886.
20.Geilfus, C. M. (2018b). Review on the significance of chlorine for crop yield and quality, Plant Sci. 270, P.114-122.
21.Grattana, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops, Scientia Horticulturae 78, P.127-157.
22.GWI. Global water intelligence (2010). https://www.globalwaterintel.com.
23.Hu, Y., Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants, Journal of Plant Nutrition and Soil Science: Volume 168, Issue 4.
24.Huang, L., Liu, X., Wang, Z., Liang, Z., Wang, M., Liu, M., Suarez, D.L. (2017). Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.), Agricultural Water Management, Volume 194, P.48-57.
25.Jenny, H., & Leonard, C. D. (1934). Functional relationships between soil properties and rainfall. Soil Science, 38(5), P.363-382.
26.Kadlec, R. H., Knight, R. L. (1996). Treatment Wetlands, (2nd ed).
27.Kadlec, R. H., Wallace, S., & Knight, R. L. (1995). Treatment Wetlands: Taylor & Francis.
28.Kang, M.S., Park, S.W., Lee, J .J., Yoo,K.H. (2006). Applying SWAT for TMDL programs to a small watershed containing rice paddy fields , Agricultural Water Management 79.
29.Kassam, A., Smith, M. (2001). FAO methodologies on crop water use and crop water productivity, Expert meeting on crop water productivity. Paper No. CWP-M07, Rome, Italy.
30.Kikuo, K.Z., (2002). Nitrogen fertilization and nitrate pollution in groundwater in Japan:Present status and measures for sustainable agriculture, Nutrient Cycling in Agroecosystems 63, P.129-137.
31.Liang, X.Q., Chen, Y.X., Li , H., Tian, G.M., Ni, W.Z., He, M.M. ,Zhang, Z.J., (2007). Modeling transport and fate of nitrogen from urea applied to a near-trend paddy field, Environmental Pollution 150.
32.Maas, E.V., Hoffman G.J. (1977). Crop salt tolerance-current assessment, The Journal of the Irrigation and Drainage Division, American Society of Civil Engineers.
33.Mazda, Y., Sato, Y., Sawamoto, S., Yokochi, H., Wolanski, E. (1990). Links between physical, chemical and biological processes in Bashita-minato, a mangrove swamp in Japan, Estuarine, Coastal and Shelf Science, Volume 31, Issue 6, P.817-833.
34.Mekorot, Israel National Water Co. (2003). Dan Region Project – Groundwater Recharge with Municipal Water, Brochure of Introduction.
35.Nakasone, H., Kuroda, H., Kato, T., Tabuchi, T. (2003). Nitrogen removal from water containing high nitrate nitrogen in a paddy field (wetland). Water Science and Technology Vol.48 No.10.
36.Nezlin, N.P.,Kamer, K., Hyde, J., Stein, E.D. (2009). Dissolved oxygen dynamics in a eutrophic estuary, Upper Newport Bay, California, Estuarine, Coastal and Shelf Science, Volume 82, Issue 1, P.139-151.
37.Radcliffe, J. (2021). Current status of recycled water for agricultural irrigation in Australia, potential opportunities and areas of emerging concern., Science of the Total Environment.
38.Reddy, K. R., Patrick, W. H., & Broadbent, F. E. (1984). Nitrogen transformations and loss in flooded soils and sediments. C R C Critical Reviews in Environmental Control, 13(4).
39.Reddy, K. R., Patrick, W. H., Broadbent, F. E. (1984). Nitrogen transformations and loss in flooded soils and sediments. C R C Critical Reviews in Environmental Control, 13(4), 273-309.
40.Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils, Funct. Plant Biol. 37 (7), P.613-620.
41.Rout, G.R., Sahoo, S., Das, A.B., Das, S.R. (2014). Screening of iron toxicity in rice genotypes on the basis of morphological, physiological and biochemical analysis, Journal of Experimental Biology and Agricultural Sciences 2, P.567-582.
42.Saleh, A., Al-Ruwaih, F., Shehata, M. (1999). Hydrogeochemical processes operating within the main aquifers of Kuwait, J Arid Environ 42, P.195-209.
43.Shaki, A., Adeloye, A. (2006). Evaluation of quantity and quality of irrigation water at Gadowa irrigation project in Murzuq Basin, southwest Libya, Agric Water Manag 84, P.193.
44.Shannon, M.C., Rhoade,s J.D., Draper, J.H., Scardaci, S.C., Spyres, M.D. (1998). Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Sci. 38, , P.394-398.
45.Simpson, J., Muirhead, W., Bowmer, K., Cai, G., Freney, J. (1988). Control of gaseous nitrogen losses from urea applied to flooded rice soils. Fertilizer research, 18(1).
46.Singh, A.K., Mondal, G.C., Kumar, S., Singh, T.B., Tewary, B.K., Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India, Environ Geol 54, P.745-758.
47.Verma, A., Kanwar, R.S., Tim, U.S. (1995). Modification of drainage model by using the nitrogen component from the GLEAMS model. Water Resour. Manage 7.
48.Watts, D.G., Hanks, R.J. (1978). A soil water nitrogen model for irrigated corn on sandy soils. Soil Sci. Soc. Am. J. 42.
49.Wilcox, L.V., Blair, G.Y., and Bower, C.A. (1954). Effect of bicarbonate on suitability of water for irrigation. Soil Sci. 77, P.259-266.
50.William, H.J.P., Sturgis, M.B. (1995). Concentration and Movement of Oxygen as Related to Absorption of Ammonium and Nitrate Nitrogen by Rice, Soil Science Society of America Journal: Volume 19, Issue 1, P.59-62.
51.Yoshinaga, I., Miura, A., Hitomi, T., Hamada, K., Shiratani, E. (2007). Runoff nitrogen from a large sized paddy field during a crop period, Agricultural Water Management 87.
52.Zeng, L., Shannon, M.C. (2000). Salinity Effects on Seedling Growth and Yield Components of Rice, Crop Breeding, Genetics & Cytology.
53.Zulu, G., Toyota, M., Misawa, S., (1996). Characteristics of water reuse and its effect on paddy irrigation system water balance and Riceland ecosystem, Agricultural Water Management 31.
54.山下正 (2011),沖縄における下水処理水の農業利用の研究,農工研報50。
55.內政部國土管理署 (2023),111年度污水下水道統計要覽。
56.日本國土交通省 (2017),渇水時等における下水再生水利用 事例集,国土交通省 水管理国土保全局下水道部。
57.比嘉明美 (2011),沖縄県における施設農業での再生水灌漑利用適用性評価。
58.王聖瑋、劉志忠、陳世楷、陳嬿伃、李蕙君、林建文、陳盈如 (2016),全國地下水管理與整合計畫。
59.田中宏明、岡本誠一郎 (2011),世界で進展する農業灌漑用下水再生水プロジェクト。
60.仲村元、鋼鉄幸博、荒川浩成 (2009),日本初再生水利用による大規模かんがい計画について-国営土地改良事業地区調査「島尻地区」の概要-水と土,第156号。
61.全國法規資料庫 (2024),農田灌溉排水管理辦法,https://law.moj.gov.tw。
62.江莉琦、廖啟鈞、黃其軒、陳豐文 (2024),酒廠放流水對高粱吸收常量元素之影響,農業工程學報,第66卷,第2期。
63.池田元樹、高方渡邊 (2011),灌溉水中氨氮、硝酸鹽氮及穗肥氮對水稻栽培的施肥效應。
64.呂坤泉、楊嘉凌、許志聖 (2007),稉稻品種臺中192號之育成,臺中區農業改良場研究彙報97,P.51-70。
65.李紹通 (2016),新型複合磷肥及其製備方法,中華人民共和國國家智慧財產權局。
66.村松亜由美、渡部徹、佐々木貴史、伊藤紘晃、梶原晶彦 (2012),下水処理水の循環灌漑による省資源型水稲栽培,環境工学研究論文集,第49巻。
67.林再發 (1980),臺中秈十號之育成,臺中區農業改良場研究彙報03 P.1-6。
68.林思妤 (2021),灌溉水質對農業生產之影響—以桃園地區水稻生產為例,台灣大學碩士論文。
69.林家玉、廖勁穎 (2015),水稻氮肥用量對生育及品質之影響,行政院農業委員會臺東區農業改良場104年試驗研究推廣成果研討會專刊,P.43-62。
70.林浩潭 (1994),土壤污染問題與防治,臺灣農業30 (5)。
71.林浩潭 (2006),重金屬及微量元素對作物之影響,植物保護手冊,農業藥物試驗所。
72.林浩潭 (2007),工廠排放廢水對水稻之危害,植物保護圖鑑系列8,農業部動植物防疫檢疫局。
73.林國清 (2004),水稻新品種台南11 號之育成,台南區農業改良場研究彙報45。
74.林慶喜 (2007),水稻保護(上冊),植物保護圖鑑系列8,農業部動植物防疫檢疫局。
75.治多伸介、中矢雄二 (2011),水田での再生水利用の現状と発展性,農業農村工学会誌,第79巻,第11号。
76.段英華、範曉榮、李奕林、王芳、張亞麗、徐國華、沈其榮 (2008),水稻增硝營養的生理與分子生物學機制,中國農業科學41(6):1708-1716。
77.桃園市政府水務局 (2023),112年度水資源回收中心放流水再利用於農業供灌推廣計畫-以桃園市楊梅廠為例。
78.桃園市政府水務局 (2024),社子溪,https://wrb.tycg.gov.tw/。
79.翁維智 (2023),瑠公管理處補助金門引水灌溉工程經費3千萬,金門日報。
80.高畠寛生 (2011),再生水の生産技術と農業利用への展開。
81.張文亮 (1991),利用主成份方法區分臺灣西部灌溉水質污染,臺灣農業工程學會。
82.張文亮 (2010),灌溉水質-灌溉水電導度的意義, http://www.pathippo.net/irr/irr-1.htm。
83.張淑賢 (1976),氮供應形態、強度及容量因子對水稻生育的影響,國立臺灣大學農業化學研究所碩士論文。
84.張添晉 (2011),水資源永續利用及水再生產業之發展,永續產業發展季刊NO.57,臺灣經濟部。
85.張琇妍、嚴國恩、黃浩銓 (2024),利用田間栽培管理調節水田之溫室氣體排放,農業淨零碳排與碳匯專輯,花蓮區農業專訊,第127期,農業部花蓮農業改良場。
86.張尊國 (2009),寶島水資源,臺灣臺北市立動物園綠色思考─減碳解說培訓班。
87.曹小闖、劉曉霞、馬超、田倉、朱練峰、吳龍龍、張均華、金千瑜、朱春權、孔亞麗、虞軼俊 (2022),乾濕交替灌溉改善稻田根際氧環境進而促進氮素轉化和水稻氮素吸收,植物營養與肥料學報28(1),P.1-14。
88.莊商路、林國清、吳文政 (1990),水稻新品種台稉2號之育成,台南區農業改良場研究彙報25, P.1-20。
89.許志聖、呂坤泉、李健捀 (2008),台稉 9號合理化施肥技術,臺中區農業專訊第62期,P.8-9。
90.許志聖、宋勳 (1993),梗稻新品種-台梗9號,臺中區農業改良場82年度年報。
91.許珮甄 (2005),都市污水處理廠放流水再利用於農業灌溉之研究-以八里污水處理廠為例。
92.許國樑 (2009),折點加氯對氨氮分解反應時間及餘氯量影響之研究,自來水會刊第29卷,第3期。
93.郭鴻裕、劉滄棽、江志峰 (2010),作物(水稻)吸收土壤重金屬鎘機制與農產品安全之影響,農業試驗所技術服務,第83期。
94.陳素娥、黃振增、林芳洲、張學琨、林文龍 (1996),水稻新品種臺稉14號之育成,桃園區農業改良場研究報告,第26號。
95.陳豐文、林修德、蔡西銘 (2012),河川水質與水稻產量之關聯性分析-以臺中地區為例,2012 年中華水土保持學會年會及學術研討會論文集。
96.曾靖恩 (2014),量測與模擬實驗尺度水稻田之氮平衡動態變化,碩士論文。
97.游昇俯 (2021),全國首支有機栽培水稻品種「桃園6號」抗稻熱病、產量穩定,農傳媒,財團法人豐年社。
98.楊秀珠、林信山 (2004),適當的土壤改良及管理,2004果菜健康管理研討會專集,農業部農業藥物毒物試驗所。
99.楊偉甫 (2011),水資源與國家永續發展,永續產業發展季刊,NO.57,臺灣經濟部。
100.楊嘉凌、許志聖 (2008),臺中秈10號合理化施肥技術,臺中區農業專訊62 P.10-11。
101.楊嘉凌、鄭佳綺、許志聖 (2015),生產優質稻米的栽培管理技術,水稻栽培管理技術手冊,P.5-6。
102.經濟部水利署 (2010),國際水再生利用推動經驗評析。
103.經濟部水利署 (2018),再生水廠智慧管理科技應用探討及規劃。
104.農業部 (2023),111年第2期作優良水稻推廣品種種植面積推估表。
105.農業部 (2024),農業統計資料查詢,https://agrstat.moa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx。
106.鄒倫、歐陽嶠暉 (2018),台灣推動再生水利用所面臨的新挑戰及因應策略,專題報告2018-03,財團法人中技社。
107.廖勁穎 (2012),水稻合理化施肥技術,台東區農技報導,第9期,農業部臺東區農業改良場。
108.廖素惠 (2023),嘉市生活廢水淨化 中央擬回抽灌溉,中時新聞網https://www.chinatimes.com。
109.彰化管理處,2024,灌溉水質檢驗作業要點,農田水利署,農業部,https://www.iachu.nat.gov.tw/open/Articles?a=17368。
110.臺灣省水利局 (1977),水稻栽培灌溉排水管理。
111.劉振宇、李金靖、黃旭輝、陳豐文、卓宇謙、林修德 (2022),水資源永續利用之契機-公共民生放流水回收應用於農業灌溉之實證,中華民國環境工程學會 2022 環境資訊與規劃管理研討會。
112.歐陽嶠暉 (2001),市鎮污水處理水轉移為灌溉用水之探討,工業污染防治,第77期。
113.歐陽嶠暉、何明宗、廖述良 (1994),改良式連續流回分式活性污泥最適處理之研究,中國環境工程學刊,第4卷,第2期。
114.潘昶儒、施清田、林泰佑、黃佳興、宣大平 (2013),水稻田間栽培與管理,水稻專業栽培手冊,P.4-11。
115.潘昶儒、陳吉村 (2008),施肥合理‧土地永續─花蓮富里地區高雄 139 號水稻合理化施肥管理技術,豐年第58卷第23期P.37-42。
116.賴文龍、郭雅紋 (2015),水稻栽培管理技術手冊,農業部臺中區農業改良場。
117.賴文龍、曾宥綋、廖君達、楊嘉凌 (2014),水稻臺中192號氮肥需量之研究,103年度臺中區農業改良場科技計畫研究成果發表會論文輯。
118.環境部 (2020),名詞解釋,全國環境水質監測資訊網。https://wq.moenv.gov.tw。
119.環境部 (2021),2021年環境水質監測年報。
120.環境部 (2024),全國環境水質監測資訊網-水質小百科,https://wq.moenv.gov.tw/EWQP/zh/Encyclopedia/MonSpecification/DetectionMethod.aspx。
121.譚增偉 (2005),參、水稻(農試所),作物施肥手冊,中華肥料協會。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top