跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁萍
研究生(外文):HUANG, YU-PING
論文名稱:不同邊界條件之單樁式離岸風機地震反應研究與探討
論文名稱(外文):Seismic Response Analysis of Monopile Offshore Wind Turbines under Different Boundary Conditions
指導教授:宋裕祺宋裕祺引用關係
指導教授(外文):SUNG, YU-CHI
口試委員:尹世洵余信遠宋裕祺
口試委員(外文):YIN, SHIH-HSUNYU, SHIN-YUANSUNG, YU-CHI
口試日期:2024-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:100
中文關鍵詞:單樁式離岸風電地震分析基樁-土壤互制(SSI)不同邊界條件
外文關鍵詞:Monopile Offshore Wind TurbineSeismic AnalysisPile-Soil Interaction (SSI)Different Boundary Conditions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
離岸風電之結構分析與設計過程中,各種載重情境下之載重組合繁多及分析時程長,使相關軟硬體與分析模式之選定顯得十分重要,尤其是邊界條件的設定方式。本研究以美國再生能源研究室(National Renewable Energy Laboratory, NREL),所提出之5MW單樁式離岸風機為例,考量不同邊界條件於地震力下土壤與結構互制行為(Soil-Structure Interaction, SSI),並比較結構振動模態與力量傳遞之反應。
本研究為研擬不同邊界條件的影響範疇,首先以蒐集之離岸風機數值,分析國際案例及方法,再透過臺灣西部海域之場址環境條件與地質報告,採用Mechanical APDL (ANSYS 2019 R3)有限元素軟體,進行三種邊界條件之單樁式離岸風機模擬分析:(1)基礎直接固接(Fixed-End);(2)單點多自由度線性彈簧(Simplified Method);(3)多點非線性土壤彈簧(Standard Method)等,將三種邊界條件之單樁式離岸風機進行模態分析與動力歷時分析,並基於地盤受震反力分析(Seismic Site Response Analysis, SSRA)結果輸入地震加速度歷時,探討單樁式離岸風機於三種不同邊界條件之力量傳遞機制、振動模態、長期性能和分析時間。
根據分析結果顯示,於模態分析中,考慮土壤彈簧邊界條件的模型頻率略低於固定式邊界模型,且依據國際設計規範對風力機振動頻率1P~3P區間的要求(即Soft-Stiff條件),三種邊界條件模型均符合安全範圍。在動力歷時分析方面,本研究進行兩種模擬分析,分為僅考量地震載重與依據DNV規範建議作法之考量載重組合兩種分析情境,此外,還多考慮土壤阻尼之效應,以評估不同動力分析結果。在僅地震載重分析情形下,多點非線性土壤彈簧模型對結構之反應有較大之趨勢;而在載重組合分析情形下,則為基礎直接固接模型對結構反應有較大之趨勢。故在邊界條件之選擇對離岸風機結構動態行為和力量傳遞有顯著影響,本研究提供不同邊界條件下地震對單樁式離岸風機結構之寶貴數據和見解,冀望能為工程實務設計提供重要的參考依據。

In the structural analysis and design of offshore wind turbines, designers must consider numerous load combinations and extended analysis durations under various loading scenarios, making the selection of appropriate software, hardware, and analytical models critical, particularly in the setting of boundary conditions. This study utilizes the 5MW monopile offshore wind turbine proposed by the National Renewable Energy Laboratory (NREL) as a case study, considering soil-structure interaction (SSI) under seismic forces to compare structural vibration modes and force transmission responses under different boundary conditions.
To explore the scope of different boundary conditions, this study begins by collecting offshore wind turbine data, analyzing international cases and methodologies, and utilizing environmental and geological reports from the site conditions of Taiwan's western sea. The finite element software Mechanical APDL (ANSYS 2019 R3) is employed to conduct simulation analyses of three boundary condition models: (1) the monopile end is fixed at the mudline level, (2) the monopile end is restrained by a single 6DOF spring, (3) the SSI effect is considered by implementing a set of soil springs along the soil-to-monopile interfaces. Modal and dynamic time-history analyses are performed on the monopile offshore wind turbine models under these three boundary conditions. Based on the Seismic Site Response Analysis (SSRA) results, seismic acceleration time histories are input to investigate the force transmission mechanisms, vibration modes, long-term performance, and analysis duration of the monopile offshore wind turbine under these three different boundary conditions.
The analysis results show that in the modal analysis, models considering soil spring boundary conditions have slightly lower frequencies than fixed-end boundary models. According to international design standards for wind turbine vibration frequencies in the 1P~3P range (i.e., soft-stiff conditions), all three boundary condition models fall within the safe range. In the dynamic time-history analysis, two simulation scenarios are conducted: one considering only seismic loads and the other considering combined loads, with the results evaluated from the perspective of soil damping. Under the scenario considering only seismic loads, the multi-point nonlinear soil spring model exhibits a greater tendency for structural response; whereas, under the combined load scenario, the fixed-end model shows a greater tendency for structural response.
These results indicate that the choice of boundary conditions significantly affects the dynamic behavior and force transmission of offshore wind turbine structures. This study provides valuable data and insights into the impact of different boundary conditions on monopile offshore wind turbine structures under seismic conditions, aiming to offer important reference points for practical engineering design.

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 本文內容 2
第二章 文獻回顧 5
2.1 前言 5
2.2 離岸風機支撐結構設計標準 5
2.2.1 離岸風機結構檢核限度狀態 6
2.2.2 載重組合說明 7
2.3 離岸風機設計載重 8
2.3.1 風載重條件 8
2.3.2 海浪載重條件 11
2.3.3 海流載重條件 13
2.4 土壤與結構互制影響探討 14
2.4.1 線性土壤彈簧理論 15
2.4.2 非線性土壤彈簧理論 16
2.5 單樁式離岸風機地震分析文獻探討 23
2.6 能量介紹 28
第三章 分析方法 30
3.1 分析流程 30
3.2 有限元素理論 31
3.3 模型建立 32
3.3.1 風力機規格 33
3.3.2 單樁式支撐結構參數 34
3.3.3 單樁式離岸風機不同邊界條件設定 35
3.4 使用元素說明 42
3.4.1 質量元素MASS 21 42
3.4.2 梁元素BEAM 188 42
3.4.3 管元素PIPE 288 43
3.4.4 矩陣元素MATRIX 27 43
3.4.5 非線性彈簧元素COMBIN 39 44
3.5 土壤阻尼計算說明 45
3.6 考量土壤阻尼模型分析說明 46
3.7 能量計算方法說明 47
第四章 結構分析設定與結果探討 49
4.1 模態分析說明與結果檢核 49
4.1.1 模態分析說明 49
4.1.2 模態分析結果與檢核 50
4.2 結構動力歷時分析說明 51
4.2.1 設定說明 51
4.2.2 雷利阻尼(Rayleigh Damping)設定說明 51
4.2.3 本研究地震動力分析說明 52
4.3 僅考量地震載重之動力分析 52
4.3.1 地震地盤反應分析結果 53
4.3.2 不同邊界條件模型地震力施加條件與位置 55
4.3.3 考量土壤效應模型土壤阻尼施加條件與位置 57
4.3.4 結果探討 58
4.4 載重組合動力分析 85
4.4.1 環境載重說明 85
4.4.2 分析結果 88
第五章 結論與建議 95
5.1 結論 95
5.2 建議 97
參考文獻 98

[1]ISO 19901-2:2020. “Petroleum and natural gas industries – Specific requirements for offshore structures – Part 2: Seismic design procedures and criteria.”, International Organization for Standardization. (2020)
[2]DNV, “DNV-RP-0585:Seismic design of wind power plants.”, DNV, Norway. (2021)
[3]Musial, W.D., Sheppard, R.E., Dolan, D., Naughton, B., “Development of Offshore Wind Recommended Practice for U.S. Waters.”, Retrieved from National Renewable Energy Laboratory, NREL. (2013)
[4]中華民國國家標準,CNS15176-3「風力機-第3部:離岸風機設計要求」,經濟部標準檢驗,2019。
[5]International Electrotechnical Commission (IEC), IEC-61400-3: Wind Turbine –Part 3, Design requirements for offshore wind turbine, Geneva, Switzerland (2009)
[6]DNV, “DNV-RP-0437:Loads and site conditions for wind turbines.”, DNV, Norway. (2016)
[7]International Electrotechnical Commission (IEC), IEC-61400-1: Wind Turbine –Part 1, Design requirements, Geneva, Switzerland. (2014)
[8]DNV, “DNV-RP-C205:Environmental conditions and environmental loads.”, DNV, Norway. (2019)
[9]Morison, J.R.J.J.W., Schaaf, S.A., “The force exerted by surface waves on piles.”, J. Petrol. Technol., pp. 149-154. (1950)
[10]Jonkman, J.M., Robertson, A.N., Hayman, G.J. “HydroDyn User’s Guide and Theory Manual.”, Golden, CO: National Renewable Energy Laboratory, NREL. (2015).
[11]Bhattacharya, S., “Design of Foundations for Offshore Wind Turbines.”, University of Surrey. (2019)
[12]American Petroleum Institute (API), API RP 2A-LRFD: Planning, Designing, and Constructing Fixed Offshore Platforms–Load and Resistance Factor Design, Washington, U.S. (2014)
[13]Ju, S.H., Huang, Y.C., “Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes.”, Journal of Ocean Engineering, Vol. 187, pp. 106-190. (2019)
[14]Kaynia, A.M., “Seismic considerations in design of offshore wind turbines.” Soil Dynamics and Earthquake Engineering, Vol. 124, pp. 399-407. (2019)
[15]Yang, Y., Musa, B., Li, C., “Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation.”, Journal of Ocean Engineering, Vol. 178, pp. 149-154. (2019)
[16]Patra, S.K., Haldar, S., “Seismic response of monopile supported offshore wind turbine in liquefiable soil.”, Structures, Vol. 31, pp. 248-265. (2021)
[17]Sahraeian, S.M.S., Masoumi, M.A., Najafgholipour, M.A., Shafiee, A., Pandey, B., “Seismic response of monopile foundation of offshore wind turbines under near-field and far-field ground motions.”, Soil Dynamics and Earthquake Engineering, Vol. 174, pp. 108-116. (2023)
[18]Yiming, H., Mi, Z., Piguang, W., Xinglei, C., Xiuli, D., “Analytical solution of dynamic responses of offshore wind turbine supported by monopile under combined earthquake, wave and wind.”, Ocean Engineering, Vol. 267, pp. 113-319. (2023)
[19]Xi, R., Xu, C., Du, X., El Naggar, M.H., Wang, P., Liu, L., Zhai, E., “Framework for dynamic response analysis of monopile supported offshore wind turbine excited by combined wind-wave-earthquake loading.”, Journal of Ocean Engineering, Vol. 247, pp. 110-743. (2022)
[20]Chopra, A.K., “Dynamics of Structures: Theory and Applications to Earthquake Engineering.”, fourth ed. Prentice Hall, Englewood Cliffs, N. J. (2012)
[21]Youssef M. A. Hashash, “Nonlinear and Equivalent Linear Seismic Site Response of One-Dimensional Soil Columns.”, DEEPSOIL V7.0. (2020)
[22]Jonkman, J., Butterfield, S., Musial, W., & Scott, G., “Definition of a 5-MW reference wind turbine for offshore system development.”, Retrieved from National Renewable Energy Laboratory, NREL. (2009)
[23]台灣電力公司,「離岸風力發電第二期計畫可行性研究」 (2018)。
[24]經濟部標準檢驗局,「離岸風場設計規範之地震載重評估-不同破壞機率等級對應之設計地震回歸期探討及液化評估程序建議報告」,110至 111年度離岸風電場址調查及設計技術規範建置計畫,2021。
[25]中華民國國家標準,CNS 15176-1 「風力機-第1部:設計要求」,經濟部標準檢驗局,2017。
[26]Electric Power Research Institute (EPRI), “Guidelines for Determining Design Basis Ground Motions. Volume 1: Method and Guidelines for Estimating Earthquake Ground Motion in Eastern North America.” (1993)
[27]Vucetic, M., Dobry, R., “Effect of Soil Plasticity on Cyclic Response.”, Journal of Geotechnical Engineering, Vol. 117, pp. 89-107. (1991)
[28]DNV, “DNV-OS-J101:Design of Offshore Wind Turbine Structures.”, DNV, Norway. (2014)
[29]DNV, “DNV-RP-C212:Offshore soil mechanics and geotechnical engineering.”, DNV, Norway. (2017)
[30]陳儀諺,海床淘刷與船舶碰撞對離岸風機套筒式基礎之影響分析與探討,國立臺北科技大學碩士論文,2021。

電子全文 電子全文(網際網路公開日期:20290801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top