跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡維恩
研究生(外文):HU, WEI-EN
論文名稱:應用微型鰭片結構對於池沸騰熱傳增益之實驗研究
論文名稱(外文):Experimental Investigation of Pool Boiling Heat Transfer Enhancement with Micro-pin-finned Structures
指導教授:楊安石楊安石引用關係
指導教授(外文):YANG, AN-SHIK
口試委員:李魁鵬顏維謀李宜庭楊安石
口試委員(外文):LEE, KUEI-PENGYEN, WEI-MOULI, YI-TINGYANG, AN-SHIK
口試日期:2024-06-07
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:69
中文關鍵詞:池沸騰飽和沸騰微鰭片補液通道
外文關鍵詞:Pool boilingSaturated boilingMicro pin finLiquid Replenishment Channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討在均勻微鰭片表面結合不同流道寬度參數構型下對飽和池沸騰的沸騰狀態下氣泡運動行為和熱傳效能的影響。透過分析結合流道結構參數對熱傳性能的影響,間距60 µm的鰭片表面傳熱性能優於間距90 µm的表面,且相較於光滑表面,其臨界熱通量提升 25 %,最高熱傳係數比平面提高31 %。為解決局部熱點問題,微鰭片區提供了大量密度高的成核位點,流道的存在不僅可以優化氣泡動力學,也能增強熱傳過程。比較所有鰭片流道表面熱通量範圍中,具有2.5 mm寬度的補液流道表現出最佳的熱傳性能,相較於光滑表面,其臨界熱通量增加60 %,熱傳係數提高80 %;與均勻鰭片表面相比,臨界熱通提高 30 %,熱傳係數提高 35 %。流道的寬度會影響氣泡的聚併和脫離,流道壓力提供額外的向上力,使氣泡順利脫離流道。此外,流道的存在有助於牽引鰭片區域的氣泡往流道中央聚併,從而降低壁面過熱度,延遲臨界熱通量的發生。
This study investigate the effects of different channel width configurations combined with a uniform micro-fin surface on bubble dynamics and heat transfer performance in saturated pool boiling. By analyzing the impact of combined channel structure parameters on heat transfer performance, the heat transfer performance of fin structure with a 60 µm pitch is superior to those with a 90 µm pitch. Compared to a smooth surface, the critical heat flux (CHF) is increased by 25%, and the maximum heat transfer coefficient (HTC) is enhanced by 31%. To address the issue of localized hotspots, the micro-fin region provides a high density of nucleation sites and the channels optimizes bubble dynamics to enhances the heat transfer process. Among all fin channel surfaces across the range of heat fluxes, the liquid supply channel with a width of 2.5 mm exhibited the best heat transfer performance. Compared to a smooth surface, the CHF increased by 60% and HTC by 80%. Compared to a uniform fin surface, the CHF increased by 30% and the HTC by 35%. The width of the channel affects bubble coalescence and detachment, with the channel pressure providing additional upward force, facilitating bubble detachment from the channel. Additionally, the channels draw bubbles from the fin region towards the center of the channels, thereby reducing the wall superheat and delaying the onset of CHF.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 沸騰基本原理 2
1.2.2 表面增強技術 4
1.2.3 微鰭片 5
1.2.4 文獻綜整 10
1.3 研究目的 14
第二章 實驗量測 15
2.1 飛秒雷射之微型鰭片加工 15
2.2 實驗系統 15
2.2.1 實驗容器 16
2.2.2 加熱銅塊 17
2.2.3 測試表面 19
2.3 實驗儀器 22
2.3.1 恆溫系統 22
2.3.2 熱電偶 22
2.3.3 數據擷取器 23
2.3.4 高速攝影機 23
2.3.5 光源設備 24
2.3.6 電源供應器 25
2.3.7 壓力計 25
2.4 實驗儀器規格表 26
2.5 實驗參數 27
2.6 數據分析 28
2.7 實驗不確定度 29
2.8 實驗程序 30
第三章 結果與討論 33
3.1.1 池沸騰系統驗證 33
3.2 實驗數據結果與分析 35
3.2.1 微型鰭片間距效應之熱傳性能及氣泡分析 35
3.2.2 鰭片結合不同通道寬度對池沸騰熱傳性能及氣泡分析 41
3.3 經驗公式對比 54
3.3.1 臨界熱通量預測分析 54
3.3.2 平滑通道對傳熱的影響分析 60
第四章 結論 62
參考文獻 63
符號彙編 67

[1]IEA. (2023). Tracking Clean Energy Progress 2023. Retrieved from https://www.iea.org/reports/tracking-clean-energy-progress-2023(Aug. 14, 2023)
[2]E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey"Recalibrating global data center energy-use estimates," Science, vol. 367, ,Issue 6481, pp. 984-986, 2000, doi: 10.1126/science.aba3758
[3]G. Liang, and I. Mudawar "Review of pool boiling enhancement by surface modification" Int. J. Heat. Mass Transf., 128 (2019), pp. 892-933
[4]H. Chu, X. Yu, H. Jiang, D. Wang, N. Xu "Progress in enhanced pool boiling heat transfer on macro-and micro-structured surfaces" Int. J. Heat. Mass Transf., 200 (2023), Article 123530
[5]H. Wang, X. Yuan, K. Zhang, X. Lang, H. Chen, H. Yu, S. Li "Performance evaluation and optimization of data center servers using single-phase immersion cooling" Int J Heat Mass Tran, 221 (2024), Article 125057
[6]H. Chen, T. Zhang, Q. Gao, et al. "Advance and prospect of power battery thermal management based on phase change and boiling heat transfer" J. Energy Storage, 53 (2022), Article 105254, 10.1016/j.est.2022.105254
[7]G. Liang, I. Mudawar "Review of spray cooling - part 1: single-phase and nucleate boiling regimes, and critical heat flux" Int. J. Heat Mass Transf., 115 (2017), pp. 1174-1205
[8]S. Nukiyama "The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure" Int. J. Heat. Mass Transf., 9 (1966), pp. 1419-1433
[9]A. Bergles, V. Nirmalan, G. Junkhan, et al. "Bibliography on augmentation of convective heat and mass transfer-II Proceedings of the Heat Transfer" Lab Iowa State University of Science and Technology, Ames (USA). (1983)
[10]A.E. "Bergles Some perspectives on wnhanced heat transfer—second-generation heat transfer technology" J. Heat Transf., 110 (1988), pp. 1082-1096
[11]J.J. Kim, D. Son, H.Y. Kim, S.M. You "Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings" Nucl Eng Technol, 48 (2016), pp. 932-940
[12]S. Jun, J. Kim, S.M. You, H.Y. Kim "Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water" Int J Heat Mass Tran, 103 (2016), pp. 277-284
[13]G.U. Kumar, S. Suresh, M.R. Thansekhar, P.D. Babu "Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72" Appl. Surf. Sci., 423 (2017), pp. 509-520
[14]Z. Yao, Y.W. Lu, S.G. Kandlikar "Effects of nanowire height on pool boiling performance of water on silicon chips" Int. J. Therm. Sci., 50 (2011), pp. 2084-2090
[15]S.H. Kim, G.C. Lee, J.Y. Kang, et al. "Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface" Int. J. Heat Mass Transf., 91 (2015), pp. 1140-1147
[16]H. Honda, H. Takamastu, J.J. Wei "Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness" ASME J. Heat Transfer, 124 (2002), pp. 383-390
[17]J.P. O'Connor, S.M. You, J.Y. Chang "Gas-saturated pool boiling heat transfer from smooth and microporous surfaces in FC-72" J. Heat Transf., 118 (1996), pp. 662-667
[18]T.M. Anderson, I. Mudawar "Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid" J. Heat Transf., 111 (1989), pp. 752-759
[19]Z. Zhao, X. Ma, S. Li, et al. "Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces" Exp. Therm. Fluid Sci., 119 (2020), Article 110212
[20]J.J. Wei, H. Honda "Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72" Int. J. Heat Mass Transfer, 46 (2003), pp. 4059-4070
[21]H. Honda, H. Takamatsu, J.J. Wei, "Effect of the size of micro-pin-fins on boiling heat transfer from silicon chips immersed in FC-72", in: Proceedings of 12th International Heat Transfer Conference, Grenoble, France, vol. 4, 2002, pp. 75–80
[22]A.X. Ma, J.J. Wei, M.Z. Yuan, J.B. Fang "Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces" Int. J. Heat Mass Transfer, 52 (2009), pp. 2925-2931
[23]M.Z. Yuan, J.J. Wei, Y.F. Xue, J.B. Fang "Subcooled flow boiling heat transfer of FC-72 from silicon chips fabricated with micro-pin-fins" Int. J. Therm. Sci., 48 (2009), pp. 1416-1422
[24]Y.F. Xue, J.F. Zhao, J.J. Wei, Y.H. Zhang, B.J. Qi "Experimental study of nucleate pool boiling of FC-72 on micro-pin-finned surface under microgravity" Int. J. Heat Mass Transf., 63 (2013), pp. 425-433
[25]Y. Zhang, J. Zhou, W. Zhou, et al. "CHF correlation of boiling in FC-72 with micro-pin-fins for electronics cooling" Appl. Therm. Eng., 138 (2018), pp. 494-500
[26]Y. Chen, R. Fu, Y. Yan "Enhanced pool boiling heat transfer on grooved surfaces by wettability modification with nanoparticle coatings" Int. Commun. Heat Mass Transf., 137 (2022), Article 106298
[27]X. Kong, Y. Zhang, J. Wei "Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure" Exp. Therm. Fluid Sci., 91 (2018), pp. 9-19
[28]B. Liu, X. Yang, Q. Li, H. Chang, Y. Qiu "Enhanced pool boiling on composite microstructured surfaces with microcavities on micro-pin-fins" Int. Commun. Heat Mass Transf., 138 (2022), Article 106350
[29]M. Može, M. Zupančič, and I. Golobič, "Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology," Applied Thermal Engineering, vol. 169, p. 114938, 2020, doi: 10.1016/j.applthermaleng.2020.114938.
[30]W. M. Rohsenow, "A method of correlating heat-transfer data for surface boiling of liquids," Transactions of the American Society of Mechanical Engineers, vol.74, 1952, pp.969-975
[31]W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, "Handbook of heat transfer," New York, Mcgraw-hill, 1998, pp.15.46-15.47
[32]L.Y.X. Lum, K.C. Leong, J.Y. Ho "Optimizing additively manufactured macro-fin structure designs for enhanced pool boiling of dielectric fluids" Int. J. Heat Mass Transf., 219 (2024), Article 124883
[33]S. Sarangi, J.A. Weibel, S.V. Garimella "Effect of particle size on surface-coating enhancement of pool boiling heat transfer" Int. J. Heat Mass Trans., 81 (2015), pp. 103-113
[34]N. Zuber, "Hydrodynamic aspects of boiling heat transfer, " AECU-4439, 1959.
[35]I.I. Gogonin, S.S. Kutateladze "Critical heat flux as a function of heater size for a liquid boiling in a large enclosure" J. Eng. Phys., 33 (1977), pp. 1286-1289.
[36]X. Ma, G.G. Song, H.Q. Chen, Y.H. Zhang, N. Xu, J.J. Wei, "Experimental investigation and correlation analysis of pool boiling heat transfer on the array surfaces with micro-fins using FC-72 for the electronic thermal management," Applied Thermal Engineering, 236 (2024).
[37]J. Zhou, B. Qi, J. Wei "Critical heat flux on heterogeneous fractal surfaces with micro-pin-fins in pool boiling – Part II: Model establishment and analysis," International Journal of Heat and Mass Transfer, 136 (2019), pp. 46-54
[38]Y. Zhang, J. Zhou, W. Zhou, B.J. Qi, J.J. Wei "CHF correlation of boiling in FC-72 with micro-pin-fins for electronics cooling," Appl. Therm. Eng., 138 (2018), pp. 494-500
[39]B. Liu, J. Liu, Y. Zhang, J. Wei, W. Wang "Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces," Int. J. Heat Mass Transf., 132 (2019), pp. 259-270
[40]Y. Zhang, X. Ma, Z. Zhu, L. Duan, J. Wei "Critical heat flux prediction model of pool boiling heat transfer on the micro-pillar surfaces, " 28, Case Stud. Therm. Eng (2021), Article 101668
[41]S.B. Reddy Karri Dynamics of bubble departure in micro-gravity Chem. Eng. Commun., 70 (1988), pp. 127-135




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top